Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077502    DOI: 10.1088/1674-1056/28/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR

Qeemat Gul1,2, Wei He(何为)1, Yan Li(李岩)1,2, Rui Sun(孙瑞)1,2, Na Li(李娜)1,2, Xu Yang(杨旭)1,2, Yang Li(李阳)1,2, Zi-Zhao Gong(弓子召)1,2, Zong-Kai Xie(谢宗凯)1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2,3
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation. In this study, three Fe film samples with thicknesses of 50 monolayers (ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used. The magnetic anisotropy constant obtained from ferromagnetic resonance (FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy (MCA) at the normal deposition angle with larger Fe thickness. However, the in-plane uniaxial magnetic anisotropy (UMA) is induced by a higher oblique deposition angle and a smaller thickness. Its hard axis lies between the[100] and[010] directions. The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA. Due to MCA, when the magnetic field is weaker than the saturated field, the magnetization direction does not always align with the external field. The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07. Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR) systems. Thus, a vector network analyzer ferromagnetic resonance (VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.

Keywords:  oblique angle deposition      iron film thickness      magnetic anisotropy      ferromagnetic resonance  
Received:  27 March 2019      Revised:  09 May 2019      Published:  05 July 2019
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212), and the Chinese Government Scholarship (Grant No. 2015GXYG37).

Corresponding Authors:  Zhao-Hua Cheng     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR 2019 Chin. Phys. B 28 077502

[1] Ishida A and Martynov V 2002 MRS Bull. 27 111
[2] Golub V O, Gontarz R, Kakazei G and Lesnik N 1997 J. Magn. Magn. Mater. 174 95
[3] Golub V, Reddy K M, Chernenko V, Müllner P, Punnoose A and Ohtsuka M 2009 J. Appl. Phys. 105 07A942
[4] Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H and Ando Y 2009 Appl. Phys. Lett. 94 122504
[5] Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
[6] Gau J S and Yetter W E 1987 J. Appl. Phys. 61 3807
[7] Lisfi A, Lodder J C, Wormeester H and Poelsema B 2002 Phys. Rev. B 66 174420
[8] Fan X, Xuea D, Lin M, Zhang Z, Guo D, Jiang C and Wei J 2008 Appl. Phys. Lett. 92 222505
[9] Yoo J H, Restorff J B, Wun-Fogle M and Flatau A B 2008 J. Appl. Phys. 103 07B325
[10] Viala B, Inturi V R and Barnard J A 1997 J. Appl. Phys. 81 4498
[11] Shokrollahi H and Janghorban K 2007 J. Magn. Magn. Mater. 317 61
[12] Yanga Y, Liu B, Tang D, Zhang B, Lu M and Lu H 2010 J. Appl. Phys. 108 073902
[13] Xi L, Li X Y, Zhou J J, Du J H, Ma J H, Wang Z, Lu J M, Zuo Y L, Xue D S and Li F S 2011 Mater. Sci. Eng. B 176 1317
[14] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[15] Kuanr B K, Camley R E and Celinski Z 2003 J. Appl. Phys. 93 7723
[16] Queste S, Dubourg S, Achera O, Soret J C, Barholz K U and Mattheis R 2005 J. Magn. Magn. Mater. 288 60
[17] Lamy Y and Viala B 2006 IEEE Trans. Magn. 42 3332
[18] Xi L, Zhang Z, Lu J M, Liu J, Sun Q J, Zhou J J, Ge S H and Li F S 2010 Phys. B 405 682
[19] Li C Y, Chai G Z, Yang C C, Wang W F and Xue D S 2015 Sci. Rep. 5 17023
[20] Phuoc N N, Chai G Z and Ong C K 2012 J. Appl. Phys. 112 113908
[21] Zhan Q F, Haesendonck C V, Vandezande S and Temst K 2009 Appl. Phys. Lett. 94 042504
[22] Prinz G A, Rado G T and Krebs J J 1982 J. Appl. Phys. 53 2087
[23] Oliver S A, Vittoria C, Schlomann E, Van Hook H J and Tustison R W 1988 J. Appl. Phys. 63 3802
[24] Heinrich B, Purcell S T, Dutcher J R, Urquhart K B, Cochran J F and Arrott A S 1988 Phys. Rev. B 38 12 879
[25] Hurdequint H 1991 J. Magn. Magn. Mater. 93 336
[26] da Silva E C, Meckenstock R, von Geisau O, Kordecki R, Pelzl J, Wolf J A and Griinberg P 1993 J. Magn. Magn. Mater. 121 528
[27] Naik R, Kota C, Payson J S and Dunifer G L 1993 Phys. Rev. B 48 1008
[28] Urban R, Woltersdorf G and Heinrich B 2001 Phys. Rev. Lett. 87 217204
[29] Woltersdorf G and Heinrich B 2004 Phys. Rev. B 69 184417
[30] Twisselmann D J and McMichael R D 2003 J. Appl. Phys. 93 6903
[31] Lindner J, Lenz K, Kosubek E, Baberschke K, Spoddig D, Meckenstock R, Pelzl J, Frait Z and Mills D L 2003 Phys. Rev. B 68 060102(R)
[32] Gerrits T, van den Berg H A M, Hohlfeld J, Bär L and Rasing T 2002 Nature 418 509
[33] Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205
[34] Sun J Z 2006 IBM J. Res. Dev. 50 81
[35] Calleja J F, Menéndez J L, Cebollada A and Contreras C 2001 Jpn. J. Appl. Phys. 40 6829
[36] Qeemat G, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong Z Z, Xie Z K, Zhang X Q and Cheng Z H 2018 Chin. Phys. B 27 097504
[37] Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969
[38] Farle M F 1998 Rep. Prog. Phys. 61 755
[39] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
[40] Wolfe J H, Kawakami R K, Ling W L, Qiu Z Q, Arias R and Mills D L 2001 J. Magn. Magn. Mater. 232 36
[41] Bubendorff J L, Zabrocki S, Garreau G, Hajjar S, Jaafar R, Berling D, Mehdauoui A, Pirri C and Gewinner G 2006 Europhys. Lett. 75 119
[42] Tang J, He W, Zhang Y S, Zhang W, Li Y, Ahmad S S, Zhang X Q and Cheng Z H 2017 AIP Adv. 7 056311
[43] Anisimov A N, Farle M, Poulopoulos P, Platow W, Baberschke K, Isberg P, Wäppling R, Niklasson A M N and Eriksson O 1999 Phys. Rev. Lett. 82 2390
[44] Pelzl J, Meckenstock R, Spoddig D, Schreiber F, Pflaum J and Frait Z 2003 J. Phys.: Condens. Matter 15 S451
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[4] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[5] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[6] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[7] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[8] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[9] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[10] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[11] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[12] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[13] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[14] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[15] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
No Suggested Reading articles found!