Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056701    DOI: 10.1088/1674-1056/28/5/056701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice

Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华)
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  

We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose-Einstein condensate (BEC) with spin-orbit coupling (SOC) in an optical lattice. By adopting the rotating-wave approximation (RWA) and applying an exact trial-solution to the corresponding quasistationary system, we establish a different method for tuning SOC via external field such that the existence conditions of the exact particular solutions are fitted. Several novel features related to the exact states are demonstrated; for example, SOC leads to spin-motion entanglement for the spatiotemporal Bloch states, SOC increases the population imbalance of the two-component BEC, and SOC can be applied to manipulate the stable atomic flow which is conducive to control quantum transport of the BEC for different application purposes.

Keywords:  Bose-Einstein condensate      spin-orbit coupling      spatiotemporal Bloch state      spin-motion entanglement      stable atomic flow      high-frequency limit  
Received:  31 October 2018      Revised:  06 February 2019      Published:  05 May 2019
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  05.60.Gg (Quantum transport)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11475060).

Corresponding Authors:  Wen-Hua Hai     E-mail:  whhai2005@aliyun.com

Cite this article: 

Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华) Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice 2019 Chin. Phys. B 28 056701

[1] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[2] Elliott R J 1954 Phys. Rev. 96 280
[3] Dresselhaus G, Kip A F and Kittel C 1954 Phys. Rev. 95 568
[4] Dresselhaus G 1955 Phys. Rev. 100 580
[5] Rashba E I 1960 Sov. Phys. Solid State 2 1224
[6] Liu L, Chen W X, Wang R Q and Hu L B 2018 Chin. Phys. B 27 047201
[7] Tang Z H, Yao T X and Liu J J 2017 Chin. Phys. B 26 117203
[8] Zhang L 2018 Chin. Phys. B 27 067203
[9] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[10] Galitski V and Spielman I B 2013 Nature 494 49
[11] Huang F J, Chen Q H, and Liu W M 2014 Phys. Rev. A 89 033624
[12] Xie W F, He Y Z and Bao C G 2015 Chin. Phys. B 24 060305
[13] Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
[14] Zhang X F, Kato M, Han W, Zhang S G, and Saito H 2017 Phys. Rev. A 95 033620
[15] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[16] Li Z J, Hai W H and Deng Y 2013 Chin. Phys. B 22 090505
[17] Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202
[18] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604
[19] Zhou Z, Hai W H, Deng Y and Xie Q T 2012 Chaos Solitons & Fractals 45 1423
[20] Liu L W, Gengzang D J, An X J and Wang P Y 2018 Chin. Phys. B 27 034205
[21] Abdullaev F K and Kraenkel R A 2000 Phys. Rev. A 62 023613
[22] Fujioka J, Cortés E, Pérez-Pascual R, Rodríguez R F, Espinosa A and Malomed B A 2011 Chaos 21 033120
[23] Xu J, Hai W H and Li H 2007 Chin. Phys. B 16 2244
[24] Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
[25] Deconinck B, Kutz J N, Patterson M S and Warner B W 2003 J. Phys. A: Math. Gen. 36 5431
[26] Kostov N A, Enol'skii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617
[27] Zhang H F, Chen W, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[28] Bronski J C, Carr L D, Deconinck B, Kutz J N and Promislow K 2001 Phys. Rev. E 63 036612
[29] Hai W H, Li C H, Fang X M and Gao K L 2004 Physica A 335 445
[30] Theodorakis S and Leontidis E 1997 J. Phys. A: Math. Gen. 30 4835
[31] Hai W H, Li Y, Xia B and Luo X 2005 Europhys. Lett 71 28
[32] Deng H M, Hai W H and Zhu Q Q 2006 J. Phys. A: Math. Gen. 39 49
[33] Deconinck B, Frigyik B A and Kutz J N 2001 Phys. Lett. A 283 177
[34] Hai W H, Chong G S, Xie Q T and Lu J 2004 Eur. Phys. J. D 28 267
[35] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[36] Liu W M and Li J 2018 Acta Phys. Sin. 67 110302 (in Chinese)
[37] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[38] Cook R J, Shankland D G and Wells A L 1985 Phys. Rev. A 31 564
[39] Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101
[40] Yuan L M, Xu Y G, Gao W, Dai F and Wu Q L 2018 Chin. Phys. B 27 044101
[41] Salerno M, Abdullaev F K, Gammal A and Tomio L 2016 Phys. Rev. A 94 043602
[42] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[43] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[44] Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[45] Hai K, Luo Y R, Chong G S, Chen H and Hai W H 2017 Quantum Inf. Comput. 17 456
[46] Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
[47] Kong C, Chen H, Li C L and Hai W H 2018 Chaos 28 023115
[48] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[49] Romero-Isart O and García-Ripoll J J 2007 Phys. Rev. A 76 052304
[50] Luo Y R, Lu G B, Kong C and Hai W H 2016 Phys. Rev. A 93 043409
[51] Arlinghaus S and Holthaus M 2011 Phys. Rev. A 84 063617
[52] Paul T, Richter K and Schlagheck P 2005 Phys. Rev. Lett. 94 020404
[53] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Science 326 1241
[54] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
[55] Chen Y A, Nascimbéne S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[56] Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
[57] Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S and Ye J 2011 Phys. Rev. Lett. 107 073202
[58] Inouye S, Andrews M R, Stengeretal J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[59] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[1] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[6] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[7] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[8] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[9] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[10] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[11] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[12] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[13] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[14] Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨). Chin. Phys. B, 2019, 28(9): 093701.
[15] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
No Suggested Reading articles found!