Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038504    DOI: 10.1088/1674-1056/28/3/038504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector

Zhi Jiang(蒋志)1,2, Yao-Yao Sun(孙姚耀)1,2, Chun-Yan Guo(郭春妍)1,2, Yue-Xi Lv(吕粤希)1,2, Hong-Yue Hao(郝宏玥)1,2, Dong-Wei Jiang(蒋洞微)1,2, Guo-Wei Wang(王国伟)1,2, Ying-Qiang Xu(徐应强)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1 (blue channel) and long-wavelength infrared band-2 (red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under -60 mV, respectively. The optical performance for each channel was achieved using a 2μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached 5.0×1011 cm·Hz1/2/W at 6.8 μm and 3.1×1011 cm·Hz1/2/W at 9.1 μm, respectively, at 77 K.

Keywords:  infrared detector      InAs/GaSb superlattice      dual-color      molecular beam epitaxy  
Received:  14 December 2018      Revised:  14 January 2019      Published:  05 March 2019
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: 

Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104 and 2016YFB0402403).

Corresponding Authors:  Guo-Wei Wang, Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn;wangguowei@semi.ac.cn

Cite this article: 

Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川) High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector 2019 Chin. Phys. B 28 038504

[1] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[2] Nguyen B M, Hoffman D, Wei Y J, Delaunay P Y, Hood A and Razeghi M 2007 Appl. Phys. Lett. 90 231108
[3] Nguyen B M, Hoffman D, Delaunay P Y and Razeghi M 2007 Appl. Phys. Lett. 91 163511
[4] Huang E K, Pour S A, Hoang M A, Haddadi A, Razeghi M and Tidrow M Z 2012 Opt. Lett. 37 2025
[5] Ting D Z, Hill C J, Soibel A, Keo S A, Mumolo J M, Nguyen J and Gunapala S D 2009 Appl. Phys. Lett. 95 023508
[6] Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514
[7] Han X, Xiang W, Hao H Y, Jiang D W, Yao Y, Wang G W, Xu Y Q and Niu Z C 2017 Chin. Phys. B 26 018505
[8] Jiang Z, Han X, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2017 Infrared Phys. Technol. 86 159
[9] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 048502
[10] Sun Y Y, Lv Y X, Han X, Guo C Y, Jiang Z, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2017 Chin. Phys. B 26 098506
[11] Huang E K and Razeghi M 2012 SPIE Proceedings - The International Society for Optical Engineering, 21-26 January 2012, San Francisco, United States, 82680Z
[12] Plis E, Myers S A, Ramirez D A and Krishna S 2016 SPIE Defense + Security, 17-21 April 2016, Baltimore, United States, 981911
[13] Rodriguez J B, Christol P, Cerutti L, Chevrier F and Joullié A 2005 J. Cryst. Growth 274 6
[14] Ariyawansa G, Grupen M, Duran J M, Scheihing J E, Nelson T R and Eismann M T 2012 J. Appl. Phys. 111 073107
[15] Razeghi M, Haddadi A, Dehzangi A, Chevallier R and Yang T 2017 SPIE Defense + Security, 9-13 April 2017, Anaheim, United States, 1017705
[16] Martyniuk P, Wrobel J, Plis E, Madejczyk P, Kowalewski A, Gawron W, Krishna S and Rogalski A 2012 Semicond. Sci. Technol. 27 055002
[17] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[3] Monolithic epitaxy and optoelectronic properties of single-crystalline γ-In2Se3 thin films on mica
Xibo Yin(尹锡波), Yifan Shen(沈逸凡), Chaofan Xu(徐超凡), Jing He(贺靖), Junye Li(李俊烨), Haining Ji(姬海宁), Jianwei Wang(王建伟), Handong Li(李含冬), Xiaohong Zhu(朱小红), Xiaobin Niu(牛晓滨), and Zhiming Wang(王志明). Chin. Phys. B, 2021, 30(1): 017701.
[4] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[5] High-performance midwavelength infrared detectors based on InAsSb nBn design
Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(6): 068501.
[6] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[7] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[8] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[9] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[10] Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors
Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔). Chin. Phys. B, 2019, 28(6): 067801.
[11] Development of small pixel HgCdTe infrared detectors
Ming Liu(刘铭), Cong Wang(王丛), Li-Qing Zhou(周立庆). Chin. Phys. B, 2019, 28(3): 037804.
[12] High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy
Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 034202.
[13] Development of long-wavelength infrared detector and its space-based application requirements
Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤). Chin. Phys. B, 2019, 28(2): 028504.
[14] High performance silicon-based GeSn p-i-n photodetectors for short-wave infrared application
Yue Zhao(赵越), Nan Wang(王楠), Kai Yu(余凯), Xiaoming Zhang(张晓明), Xiuli Li(李秀丽), Jun Zheng(郑军), Chunlai Xue(薛春来), Buwen Cheng(成步文), Chuanbo Li(李传波). Chin. Phys. B, 2019, 28(12): 128501.
[15] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
No Suggested Reading articles found!