Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038504    DOI: 10.1088/1674-1056/28/3/038504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector

Zhi Jiang(蒋志)1,2, Yao-Yao Sun(孙姚耀)1,2, Chun-Yan Guo(郭春妍)1,2, Yue-Xi Lv(吕粤希)1,2, Hong-Yue Hao(郝宏玥)1,2, Dong-Wei Jiang(蒋洞微)1,2, Guo-Wei Wang(王国伟)1,2, Ying-Qiang Xu(徐应强)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1 (blue channel) and long-wavelength infrared band-2 (red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under -60 mV, respectively. The optical performance for each channel was achieved using a 2μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached 5.0×1011 cm·Hz1/2/W at 6.8 μm and 3.1×1011 cm·Hz1/2/W at 9.1 μm, respectively, at 77 K.

Keywords:  infrared detector      InAs/GaSb superlattice      dual-color      molecular beam epitaxy  
Received:  14 December 2018      Revised:  14 January 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: 

Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104 and 2016YFB0402403).

Corresponding Authors:  Guo-Wei Wang, Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn;wangguowei@semi.ac.cn

Cite this article: 

Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川) High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector 2019 Chin. Phys. B 28 038504

[1] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[2] Nguyen B M, Hoffman D, Wei Y J, Delaunay P Y, Hood A and Razeghi M 2007 Appl. Phys. Lett. 90 231108
[3] Nguyen B M, Hoffman D, Delaunay P Y and Razeghi M 2007 Appl. Phys. Lett. 91 163511
[4] Huang E K, Pour S A, Hoang M A, Haddadi A, Razeghi M and Tidrow M Z 2012 Opt. Lett. 37 2025
[5] Ting D Z, Hill C J, Soibel A, Keo S A, Mumolo J M, Nguyen J and Gunapala S D 2009 Appl. Phys. Lett. 95 023508
[6] Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514
[7] Han X, Xiang W, Hao H Y, Jiang D W, Yao Y, Wang G W, Xu Y Q and Niu Z C 2017 Chin. Phys. B 26 018505
[8] Jiang Z, Han X, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2017 Infrared Phys. Technol. 86 159
[9] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 048502
[10] Sun Y Y, Lv Y X, Han X, Guo C Y, Jiang Z, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2017 Chin. Phys. B 26 098506
[11] Huang E K and Razeghi M 2012 SPIE Proceedings - The International Society for Optical Engineering, 21-26 January 2012, San Francisco, United States, 82680Z
[12] Plis E, Myers S A, Ramirez D A and Krishna S 2016 SPIE Defense + Security, 17-21 April 2016, Baltimore, United States, 981911
[13] Rodriguez J B, Christol P, Cerutti L, Chevrier F and Joullié A 2005 J. Cryst. Growth 274 6
[14] Ariyawansa G, Grupen M, Duran J M, Scheihing J E, Nelson T R and Eismann M T 2012 J. Appl. Phys. 111 073107
[15] Razeghi M, Haddadi A, Dehzangi A, Chevallier R and Yang T 2017 SPIE Defense + Security, 9-13 April 2017, Anaheim, United States, 1017705
[16] Martyniuk P, Wrobel J, Plis E, Madejczyk P, Kowalewski A, Gawron W, Krishna S and Rogalski A 2012 Semicond. Sci. Technol. 27 055002
[17] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304
[1] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[2] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[3] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[4] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[5] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[6] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[7] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[8] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[9] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[10] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[11] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[12] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[13] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[14] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[15] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
No Suggested Reading articles found!