Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038503    DOI: 10.1088/1674-1056/28/3/038503
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

High performance lateral Schottky diodes based on quasi-degenerated Ga2O3

Yang Xu(徐阳)1, Xuanhu Chen(陈选虎)1, Liang Cheng(程亮)1, Fang-Fang Ren(任芳芳)1,2,3, Jianjun Zhou(周建军)4, Song Bai(柏松)4, Hai Lu(陆海)1, Shulin Gu(顾书林)1,2, Rong Zhang(张荣)1,2, Youdou Zheng(郑有炓)1,2, Jiandong Ye(叶建东)1,2,3
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;
3 Research Institute of Shenzhen, Nanjing University, Shenzhen 518057, China;
4 State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, The 55th Research Institute of China Electronics Technology Group Corporation, Nanjing 210016, China
Abstract  

Ni/β-Ga2O3 lateral Schottky barrier diodes (SBDs) were fabricated on a Sn-doped quasi-degenerate n+-Ga2O3 (201) bulk substrate. The resultant diodes with an area of 7.85×10-5 cm2 exhibited excellent rectifying characteristics with an ideality factor of 1.21, a forward current density (J) of 127.4 A/cm2 at 1.4 V, a specific on-state resistance (Ron, sp) of 1.54 mΩ·cm2, and an ultra-high on/off ratio of 2.1×1011 at ±1 V. Due to a small depletion region in the highly-doped substrate, a breakdown feature was observed at -23 V, which corresponded to a breakdown field of 2.1 MV/cm and a power figure-of-merit (VB2/Ron) of 3.4×105 W/cm2. Forward current–voltage characteristics were described well by the thermionic emission theory while thermionic field emission and trap-assisted tunneling were the dominant transport mechanisms at low and high reverse biases, respectively, which was a result of the contribution of deep-level traps at the metal–semiconductor interface. The presence of interfacial traps also caused the difference in Schottky barrier heights of 1.31 eV and 1.64 eV respectively determined by current–voltage and capacitance–voltage characteristics. With reduced trapping effect and incorporation of drift layers, the β-Ga2O3 SBDs could further provide promising materials for delivering both high current output and high breakdown voltage.

Keywords:  β-Ga2O3      Schottky diode      transport mechanism      quasi-degeneration      rectifier  
Received:  22 December 2018      Revised:  14 January 2019      Accepted manuscript online: 
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  73.50.-h (Electronic transport phenomena in thin films)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61322403, and 91850112), the State Key R&D Project of Jiangsu, China (Grant No. BE2018115), Shenzhen Fundamental Research Project, China (Grant Nos. 201773239 and 201888588), State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, China (Grant No. 2017KF001), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 021014380093 and 021014380085).

Corresponding Authors:  Jiandong Ye     E-mail:  yejd@nju.edu.cn

Cite this article: 

Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东) High performance lateral Schottky diodes based on quasi-degenerated Ga2O3 2019 Chin. Phys. B 28 038503

[1] Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341
[2] Jang S, Jung S, Kim J, Ren F, Pearton S J and Baik K H 2018 ECS J. Solid State Sc 7 Q3180
[3] Oshima T, Hashiguchi A, Moribayashi T, Koshi K, Sasaki K, Kuramata A, Ueda O, Oishi T and Kasu M 2017 Jpn. J. Appl. Phys. 56 086501
[4] Oh S, Yang G and Kim J 2017 ECS J. Solid State Sc 6 Q3022
[5] Oishi T, Koga Y, Harada K and Kasu M 2015 Appl. Phys. Express 8 031101
[6] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y and Monemar B 2016 Appl. Phys. Lett. 108 133503
[7] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
[8] Hu Z, Zhou H, Feng Q, Zhang J, Zhang C, Dang K, Cai Y, Feng Z, Gao Y and Kang X 2018 IEEE Electron Device Lett. 39 1564
[9] Yang J C, Ahn S, Ren F, Pearton S J, Jang S, Kim J and Kuramata A 2017 Appl. Phys. Lett. 110 192101
[10] Farzana E, Zhang Z, Paul P K, Arehart A R and Ringel S A 2017 Appl. Phys. Lett. 110 202102
[11] Ahn S, Ren F, Yuan L, Pearton S and Kuramata A 2017 ECS J. Solid State Sc 6 P68
[12] Oshima T, Okuno T, Arai N, Suzuki N, Hino H and Fujita S 2009 Jpn. J. Appl. Phys. 48 011605
[13] Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
[14] Pratiyush A S, Xia Z, Kumar S, Zhang Y, Joishi C, Muralidharan R, Rajan S and Nath D N 2018 IEEE Photon. Technol. Lett. 30 2025
[15] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
[16] Li W, Hu Z, Nomoto K, Zhang Z, Hsu J Y, Thieu Q T, Sasaki K, Kuramata A, Jena D and Xing H G 2018 Appl. Phys. Lett. 113 202101
[17] Yang J, Ahn S, Ren F, Pearton S, Jang S and Kuramata A 2017 IEEE Electron Device Lett. 38 906
[18] Yang J C, Ren F, Tadjer M, Pearton S J and Kuramata A 2018 AIP Adv. 8 055026
[19] Joishi C, Rafique S, Xia Z, Han L, Krishnamoorthy S, Zhang Y, Lodha S, Zhao H and Rajan S 2018 Appl. Phys. Express 11 031101
[20] Sasaki K, Wakimoto D, Thieu Q T, Koishikawa Y, Kuramata A, Higashiwaki M and Yamakoshi S 2017 IEEE Electron Device Lett. 38 783
[21] Kasu M, Oshima T, Hanada K, Moribayashi T, Hashiguchi A, Oishi T, Koshi K, Sasaki K, Kuramata A and Ueda O 2017 Jpn. J. Appl. Phys. 56 091101
[22] Kasu M, Hanada K, Moribayashi T, Hashiguchi A, Oshima T, Oishi T, Koshi K, Sasaki K, Kuramata A and Ueda O 2016 Jpn. J. Appl. Phys. 55 1202BB
[23] Oishi T, Harada K, Koga Y and Kasu M 2016 Jpn. J. Appl. Phys. 55 030305
[24] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X and Liu M 2017 Appl. Phys. Lett. 110 093503
[25] Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S and Nath D N 2017 J. Appl. Phys. 121 164502
[26] Hudait M and Krupanidhi S 2001 Phys. B: Condens. Matter 307 125
[27] Chiu F C 2014 Adv. Mater. Sci. Eng. 7 1
[28] Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
[29] Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[30] Sun X, Li D, Jiang H, Li Z, Song H, Chen Y and Miao G 2011 Appl. Phys. Lett. 98 121117
[31] Sang L W, Ren B, Sumiya M, Liao M Y, Koide Y, Tanaka A, Cho Y J, Harada Y, Nabatame T, Sekiguchi T, Usami S, Honda Y and Amano H 2017 Appl. Phys. Lett. 111 122102
[32] Sang L, Liao M, Koide Y and Sumiya M 2011 Appl. Phys. Lett. 98 103502
[33] Freeouf J L, Jackson T N, Laux S E and Woodall J M 1982 J. Vac. Sci. Technol. 21 570
[34] Ohdomari I and Tu K N 1980 J. Appl. Phys. 51 3735
[1] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[4] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[5] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Design of a novel high holding voltage LVTSCR with embedded clamping diode
Ling Zhu(朱玲), Hai-Lian Liang(梁海莲), Xiao-Feng Gu(顾晓峰), Jie Xu(许杰). Chin. Phys. B, 2020, 29(6): 068503.
[8] Study on the nitridation of β-Ga2O3 films
Fei Cheng(程菲), Yue-Wen Li(李悦文), Hong Zhao(赵红), Xiang-Qian Xiu(修向前), Zhi-Tai Jia(贾志泰), Duo Liu(刘铎), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(8): 088103.
[9] Influence of annealing treatment on the luminescent properties of Ta:β-Ga2O3 single crystal
Xiaowei Yu(余小威), Huiayuan Cui(崔慧源), Maodong Zhu(朱茂东), Zhilin Xia(夏志林), Qinglin Sai(赛青林). Chin. Phys. B, 2019, 28(7): 077801.
[10] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[11] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
[12] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[13] Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛). Chin. Phys. B, 2019, 28(1): 016301.
[14] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[15] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
No Suggested Reading articles found!