Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016402    DOI: 10.1088/1674-1056/28/1/016402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Equation of state of LiCoO2 under 30 GPa pressure

Yong-Qing Hu(户永清)1, Lun Xiong(熊伦)1,2, Xing-Quan Liu(刘兴泉)3, Hong-Yuan Zhao(赵红远)4, Guang-Tao Liu(刘广涛)5, Li-Gang Bai(白利刚)6, Wei-Ran Cui(崔巍然)6, Yu Gong(宫宇)6, Xiao-Dong Li(李晓东)6
1 School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China;
2 DaZhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000, China;
3 School of Materials and Energy, University of Electronic Science and Technology, Chengdu 610054, China;
4 Research Branch of Advanced Materials & Green Energy, Henan Institute of Science and Technology, Xinxiang 453003, China;
5 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

LiCoO2 is one of the most important cathode materials for high energy density lithium ion batteries. The compressed behavior of LiCoO2 under high pressure has been investigated using synchrotron radiation x-ray diffraction. It is found that LiCoO2 maintains hexagonal symmetry up to the maximum pressure of 30.1 GPa without phase transition. The elastic modulus at ambient pressure is 159.5(2.2) GPa and its first derivative is 3.92(0.23). In addition, the high-pressure compression behavior of LiCoO2 has been studied by first principles calculations. The derived bulk modulus of LiCoO2 is 141.6 GPa.

Keywords:  equation of state      high pressure      LiCoO2  
Received:  10 September 2018      Revised:  28 October 2018      Published:  05 January 2019
PACS:  64.30.Jk (Equations of state of nonmetals)  
  64.60.-i (General studies of phase transitions)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  61.05.cp (X-ray diffraction)  
Fund: 

Project supported by the Program of Education Department of Sichuan Province of China (Grant No. 18ZB0506), the Project of Sichuan University of Arts and Science, China (Grant No. 2017KZ001Z), and Outstanding Talent Introduction Project of Henan Institute of Science and Technology, China (Grant No. 203010617011). This work was performed at 4W2 beamline of Beijing Synchrotron Radiation Facility (BSRF), which was supported by Chinese Academy of Sciences (Grant Nos. KJCX2-SWN03 and KJCX2-SW-N20).

Corresponding Authors:  Lun Xiong     E-mail:  1094129778@qq.com

Cite this article: 

Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东) Equation of state of LiCoO2 under 30 GPa pressure 2019 Chin. Phys. B 28 016402

[1] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mater. Res. Bull. 15 783
[2] Reimers J N and Dahn J R 1992 J. Electrochem. Soc. 139 2091
[3] Huang B, Jang Y I, Chiang Y M and Sadoway D R 1998 J. Appl. Electrochem. 28 1365
[4] Xiong L and Liu J 2018 Chin. Phys. B 27 036101
[5] Xu C, Sun F and Yang W G 2017 Chin. J. High Press. Phys. 31 529
[6] Fell C R, Lee D H, Meng Y S, Gallardoamores J M and Dompablo M E 2012 Energy Environ. Sci. 5 6214
[7] Wolverton C and Zunger A 1998 J. Electrochem. Soc. 145 2424
[8] Wang X, Loa I, Kunc K, Syassen K and Amboage M 2005 Phys. Rev. B 72 224102
[9] Wu L M and Zhang J 2015 J. Appl. Phys. 118 225101
[10] Klotz S, Chervin J C, Munsch P, March and G L 2009 J. Phys. D: Appl. Phys. 42 075413
[11] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[12] Hammersley A P, Svensson S O, Hanfl, M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
[13] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[14] Perdew E M and Burke K 1996 Phys. Rev. Lett. 77 3865
[15] Birch F 1978 J. Geophys. Res. 83 1257
[16] Kang K and Ceder G 2006 Phys. Rev. B 74 094105
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[4] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[9] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[14] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[15] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
No Suggested Reading articles found!