CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons |
Caiyun Wang(王彩云)1, Shuang Lu(鲁爽)2, Xiaodong Yu(于晓东)2, Haipeng Li(李海鹏)2,3 |
1 Editorial Board of Journal of CUMT, China University of Mining and Technology, Xuzhou 221008, China;
2 School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
3 Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA |
|
|
Abstract We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons (ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon-structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.
|
Received: 31 August 2018
Revised: 13 October 2018
Accepted manuscript online:
|
PACS:
|
65.80.Ck
|
(Thermal properties of graphene)
|
|
63.20.kp
|
(Phonon-defect interactions)
|
|
44.10.+i
|
(Heat conduction)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504418), China Scholarship Council Scholarship Program (Grant No. 201706425053), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075). |
Corresponding Authors:
Haipeng Li
E-mail: haipli@cumt.edu.cn
|
Cite this article:
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏) Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 2019 Chin. Phys. B 28 016501
|
[1] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[2] |
Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P and Wu Y X 2017 Carbon 122 756
|
[3] |
Zhou H and Zhang G 2018 Chin. Phys. B 27 034401
|
[4] |
Yang X X, Kong X T and Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese)
|
[5] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[6] |
Ye Z Q, Cao B Y and Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese)
|
[7] |
Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911
|
[8] |
Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318
|
[9] |
Yang P, Wang X L, Li P, Wang H, Zhang L Q and Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese)
|
[10] |
Jiang J W, Lan J, Wang J S and Li B 2010 J. Appl. Phys. 107 054314
|
[11] |
Chen J, Zhang G and Li B 2013 Nanoscale 5 532
|
[12] |
Huang J and Han Q 2017 Mater. Res. Express 4 035041
|
[13] |
Li H P and Zhang R Q 2012 EPL 99 36001
|
[14] |
Dollfus P, Nguyen V H and Saint-Martin J 2015 J. Phys. Condens. Matter 27 133204
|
[15] |
Tran V T, Saint-Martin J, Dollfus P and Volz S 2017 Sci. Rep. 7 2313
|
[16] |
Hossain M S, Huynh D H, Nguyen P D, Jiang L, Nguyen T C, Al-Dirini F, Hossain F M and Skafidas E 2016 J. Appl. Phys. 119 125106
|
[17] |
Li H and Grossman J C 2017 Adv. Sci. 4 1600467
|
[18] |
Li H P and Zhang R Q 2018 Chin. Phys. B 27 036801
|
[19] |
Li H P, De Sarkar A and Zhang R Q 2011 EPL 96 56007
|
[20] |
Lu A J, Zhang R Q and Lee S T 2008 Nanotechnology 19 035708
|
[21] |
Li H P and Zhang R Q 2014 EPL 105 56003
|
[22] |
Liu Z, Wu X and Luo T 2017 2D Mater. 4 025002
|
[23] |
Zhang H, Fonseca A F and Cho K 2014 J. Phys. Chem. C 118 1436
|
[24] |
Sun Y, Chen L, Cui L, Zhang Y and Du X 2018 Comput. Mater. Sci. 148 176
|
[25] |
Chien S K, Yang Y T and Chen C K 2012 Carbon 50 421
|
[26] |
Wang M, Galpaya D, Lai Z B, Xu Y and Yan C 2014 Int. J. Smart Nano Mater. 5 123
|
[27] |
Cao Y, Feng J and Wu P 2010 Carbon 48 1683
|
[28] |
Patila M, Pavlidis I V, Kouloumpis A, Dimos K, Spyrou K, Katapodis P, Gournis D and Stamatis H 2016 Int. J. Biol. Macromol. 84 227
|
[29] |
Vanzo D, Bratko D and Luzar A 2012 J. Chem. Phys. 137 034707
|
[30] |
Jang J, Pham V H, Rajagopalan B, Hur S H and Chung J S 2014 Nanoscale Res. Lett. 9 265
|
[31] |
Kinaci K, Haskins J B and Çağın T 2012 J. Phys. Chem. 137 014106
|
[32] |
Müller-Plathe F A 1997 J. Chem. Phys. 106 6082
|
[33] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[34] |
Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys. Condens Mater. 14 783
|
[35] |
Han T W and He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)
|
[36] |
Pei Q X, Zhang Y W and Shenoy V B 2010 Carbon 48 898
|
[37] |
Zheng B Y, Dong H L and Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese)
|
[38] |
Nosé S 1984 J. Chem. Phys. 81 511
|
[39] |
Hunter K C and East A L L 2002 J. Phys. Chem. A 106 1346
|
[40] |
Philpott M R and Kawazoe Y 2009 Phys. Rev. B 79 233303
|
[41] |
Xu R F, Han K and Li H P 2018 Chin. Phys. B 27 026801
|
[42] |
Dickey J M and Paskin A 1969 Phys. Rev. 188 1407
|
[43] |
Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
|
[44] |
Zhang Y Y, Pei Q X, He X Q and Mai Y W 2015 Chem. Phys. Lett. 622 104
|
[45] |
Wei N, Xu L, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
|
[46] |
Aref A H, Erfan-Niya H and Entezami A A 2016 J. Mater. Sci. 51 6824
|
[47] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[48] |
Padgett C W and Brenner D W 2004 Nano Lett. 4 1051
|
[49] |
Liu X, Zhang G, Pei Q X and Zhang Y W 2016 Mater. Today Proc. 3 2759
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|