Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010301    DOI: 10.1088/1674-1056/28/1/010301
GENERAL Prev   Next  

Direct measurement of the concurrence of hybrid entangled state based on parity check measurements

Man Zhang(张曼)1, Lan Zhou(周澜)2, Wei Zhong(钟伟)1,3, Yu-Bo Sheng(盛宇波)1,3
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

The hybrid entangled state is widely discussed in quantum information processing. In this paper, we propose the first protocol to directly measure the concurrence of the hybrid entangled state. To complete the measurement, we design parity check measurements (PCMs) for both the single polarization qubit and the coherent state. In this protocol, we perform three rounds of PCMs. The results show that we can convert the concurrence into the success probability of picking up the correct states from the initial entangled states. This protocol only uses polarization beam splitters, beam splitters, and weak cross-Kerr nonlinearities, which is feasible for future experiments. This protocol may be useful in future quantum information processing.

Keywords:  hybrid entangled state      quantum computation      parity measurement      concurrence  
Received:  25 September 2018      Revised:  17 October 2018      Published:  05 January 2019
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 11747161) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波) Direct measurement of the concurrence of hybrid entangled state based on parity check measurements 2019 Chin. Phys. B 28 010301

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[6] Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[9] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[10] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[11] Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
[12] Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603
[13] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[14] Bang J, Ryu J, Yoo S, Pawlowski M and Lee J 2014 New J. Phys. 16 073017
[15] Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
[16] Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
[17] Liu L, Gao T and Yan F L 2018 Chin. Phys. B 27 020306
[18] Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A and Deng F G 2017 Sci. China Phys. Mech. Astron. 60 120313
[19] Qin H W, Tang W K S and Tso R 2018 Quantum Inf. Process. 17 152
[20] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China Phys. Mech. Astron. 61 090312
[21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[22] Kwiat P G 1997 J. Mod. Opt. 44 2173
[23] Vallone G, Donati G, Ceccarelli R and Mataloni P 2010 Phys. Rev. A 81 052301
[24] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[25] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[26] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[27] Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
[28] Liu Q and Zhang M 2015 Phys. Rev. A 91 062321
[29] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[30] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[31] Steinlechner F, Ecker S, Fink M, Liu B, Bavaresco J, Huber M, Scheidl T and Ursin R 2017 Nat. Commun. 8 15971
[32] He Y Q, Ding D, Tao P, Yan F L and Gao T 2018 Acta Phys. Sin. 67 060302 (in Chinese)
[33] Van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[34] Munro W J, Van Meter R, Louis S G R and Nemoto K 2008 Phys. Rev. Lett. 101 040502
[35] Bruno N, Martin A, Sekatski P, Sangouard N, Thew R T and Gisin N 2013 Nat. Phys. 9 545
[36] Park K, Lee S W and Jeong H 2012 Phys. Rev. A 86 062301
[37] Kwon H and Jeong H 2013 Phys. Rev. A 88 052127
[38] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[39] Lee S W and Jeong H 2013 Phys. Rev. A 87 022326
[40] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564
[41] Kwon H and Jeong H 2015 Phys. Rev. A 91 012340
[42] Guo R, Zhou L, Gu S P, Wang X F and Sheng Y B 2016 Chin. Phys. B 25 030302
[43] Parker R C, Joo J, Razavi M and Spiller T P 2017 J. Opt. 19 104004
[44] Li S J, Yan H M, He Y Y and Wang H 2018 Phys. Rev. A 98 022334
[45] Jeong H, Hang M and Kwon H 2015 Opt. Commun. 337 12
[46] Bennett C H, DiVincenzo D P, Smolinand J A and Wootters W K 1996 Phys. Rev. A 54 3824
[47] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[48] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[49] Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
[50] Rehacek J, Englertand B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
[51] Ling A, Soh K P, Lamas-Linares A and Kurtsiefer C 2006 Phys. Rev. A 74 022309
[52] Wootters W K 1998 Phys. Rev. Lett. 80 2445
[53] Wootters W K 2001 Quant. Inf. Comput. 1 27
[54] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[55] Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
[56] Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
[57] Zhang L H, Yang M and Cao Z L 2013 Phys. Lett. A 377 1421
[58] Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
[59] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
[60] Sheng Y B, Guo R, Pan J, Zhou L and Wang X F 2015 Quant. Inf. Process. 14 963
[61] Liu J, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 070309
[62] Zhou L and Sheng Y B 2015 Entropy 17 4293
[63] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[64] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[65] Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308
[66] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[67] He B, Nadeem M and Bergou J A 2009 Phys. Rev. A 79 035802
[68] Xiu X M, Li Q Y, Lin Y F, Dong H K, Dong L and Gao Y J 2016 Phys. Rev. A 94 042321
[69] Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
[70] He Y Q, Ding D, Yan F L and Gao T 2015 Opt. Express 23 21671
[71] Dong L, Lin Y F, Li Q Y, Dong H K, Xiu X M and Gao Y J 2016 Ann. Phys. 371 287
[72] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[73] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 66 063814
[74] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[75] Feizpour A, Hallaji M, Dmochowski G and Steinberg A M 2015 Nat. Phys. 11 905
[1] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[2] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[3] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[4] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
[7] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[8] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[9] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[10] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[11] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[12] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[13] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[14] A scheme for Sagnac-effect quantum enhancement with Fock state light input
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强). Chin. Phys. B, 2017, 26(9): 094212.
[15] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
No Suggested Reading articles found!