|
|
Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit |
Ling-Quan Chen(陈灵泉)1,2, Yu-Bo Sheng(盛宇波)3,4, Lan Zhou(周澜)1,3 |
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract Single-photon entanglement (SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization-time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization-time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.
|
Received: 18 September 2018
Revised: 24 October 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 11747161), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the China Postdoctoral Science Foundation (Grant No. 2018M642293). |
Corresponding Authors:
Lan Zhou
E-mail: zhoul@njupt.edu.cn
|
Cite this article:
Ling-Quan Chen(陈灵泉), Yu-Bo Sheng(盛宇波), Lan Zhou(周澜) Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit 2019 Chin. Phys. B 28 010302
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Wang M Y and Yan F L 2016 Quantum Inf. Process. 15 3383
|
[3] |
Li T C and Yin Z Q 2016 Sci. Bull. 61 163
|
[4] |
Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
|
[5] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[6] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[7] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[8] |
Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
|
[9] |
Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
|
[10] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[11] |
Tan X Q and Zhang X Q 2016 Quantum Inf. Process. 15 2137
|
[12] |
Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
|
[13] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[14] |
Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
|
[15] |
Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
|
[16] |
Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
|
[17] |
Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
|
[18] |
Guerra A G D H, Rios F F S and Ramos R V 2016 Quantum Inf. Process. 15 4747
|
[19] |
Huang W, Su Q, Xu B J, Liu B, Fan F, Jia H Y and Yang Y H 2016 Sci. China-Phys. Mech. Astron. 59 120311
|
[20] |
Ye T Y 2015 Sci. China-Phys. Mech. Astron. 58 1
|
[21] |
Heng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China-Phys. Mech. Astron. 58 1
|
[22] |
Zhang J, Mu Q X and Zhang W Z 2018 Chin. Phys. B 27 040304
|
[23] |
Shi X 2017 Chin. Phys. B 26 120303
|
[24] |
Yang F L, Guo Y, Shi J J, Wang H L and Pan J J 2017 Chin. Phys. B 26 100303
|
[25] |
Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
|
[26] |
Silberhorn C, Korolkova N and Leuchs G 2002 Phys. Rev. Lett. 88 167902
|
[27] |
Duan L M, Lukin M D, Cirac J T and Zoller P 2001 Nature 414 413
|
[28] |
Salart D, Landry O, Sangouard N, Gisin N, Herrmann H, Sanguinetti B, Simon C, Sohler W, Thew R T, Thomas A and Zbinden H 2010 Phys. Rev. Lett. 104 180504
|
[29] |
Guerreiro T, Monteiro F and Martin A 2016 Phys. Rev. Lett. 117 070404
|
[30] |
Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
|
[31] |
Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
|
[32] |
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
|
[33] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference Computers, Systems, and Signal Processing, 1984, Bangalore, India, pp. 175-195
|
[34] |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[35] |
Kok P, Munro W J, Nemoto K, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[36] |
Marcikic I, Riedmatten H de, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509
|
[37] |
Thew R T, Tanzilli S, Tittel W, Zbinden H and Gisin N 2002 Phys. Rev. A 66 062304
|
[38] |
Marcikic I, Riedmatten H de, Tittel W, Zbinden H, Legré M and Gisin N 2004 Phys. Rev. Lett. 93 180502
|
[39] |
Inagaki T, Matsuda N, Tadanaga O and Takesue H 2013 Opt. Express 21 23241
|
[40] |
Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W 2016 Nat. Photon. 10 676
|
[41] |
Sun Q C, Mao Y L, Chen S J, Zhang W, Jiang Y F, Zhang Y B, Zhang W J, Miki S, Yamashita T, Terai H, Jiang X, Chen T Y, You L X, Chen X F, Wang Z, Fan J Y, Zhang Q and Pan J W 2016 Nat. Photon. 10 671
|
[42] |
Yoo J, Choi Y, Cho Y W, Han S W, Lee S Y, Moon S, Oh K and Kim Y S 2018 Opt. Commun. 419 30
|
[43] |
Duan L M, Lukin M D, Cirac J T and Zoller P 2001 Nature 414 413
|
[44] |
Ralph T C and Lund A P 2009 Proceedings of the 9th International Conference on Quantum Communication Measurement and Computing (Lvovsky A, Ed.) pp. 155-160
|
[45] |
Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501
|
[46] |
Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
|
[47] |
Curty M and Moroder T 2011 Phys. Rev. A 84 010304
|
[48] |
Pitkanen D, Ma X, Wickert R, Loock P van and Lütkenhaus N 2011 Phys. Rev. A 84 022325
|
[49] |
Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
|
[50] |
Zhang S L, Yang S, Zou X B, Shi B S and Guo G C 2012 Phys. Rev. A 86 034302
|
[51] |
Wang T J, Cao C and Wang C 2014 Phys. Rev. A 89 052303
|
[52] |
Wang T J and Wang C 2015 Opt. Express 23 31550
|
[53] |
McMahon N A, Lund A P and Ralph T C 2014 Phys. Rev. A 89 023846
|
[54] |
Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324
|
[55] |
Minář J, Riedmatten H de and Sangouard N 2012 Phys. Rev. A 85 032313
|
[56] |
Zhou L and Sheng Y B 2015 Laser Phys. Lett. 12 045203
|
[57] |
Monteiro F, Verbanis E, Caprara V Vivoli, Martin A, Gisin N, Zbinden H and Thew R T 2017 Quantum Sci. Technol. 2 024008
|
[58] |
Meyer Scott E, Bula M, Bartkiewicz K, Černoch A, Soubusta J, Jennewein T and Lemr K 2013 Phys. Rev. A 88 012327
|
[59] |
Ou Yang Y, Feng Z F, Zhou L and Sheng Y B 2015 Quantum Inf. Process. 14 635
|
[60] |
Ou Yang Y, Feng Z F, Zhou L and Sheng Y B 2016 Laser Phys. 26 015204
|
[61] |
Zhou L, Ou Yang Y, Wang L and Sheng Y B 2017 Quantum Inf. Process. 16 151
|
[62] |
Feng Z F, Ou Yang Y, Zhou L and Sheng Y B 2015 Quantum Inf. Process. 14 3693
|
[63] |
Bruno N, Pini V, Martin A, Verma V B, Nam S W, Mirin R, Lita A, Marsili F, Korzh B, Bussieres F, Sangouard N, Zbinden H, Gisin N and Thew R 2016 Opt. Express 24 125
|
[64] |
Kocsis S, Xiang G Y, Ralph T C and Pryde G J 2013 Nat. Phys. 9 23
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|