Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010302    DOI: 10.1088/1674-1056/28/1/010302
GENERAL Prev   Next  

Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit

Ling-Quan Chen(陈灵泉)1,2, Yu-Bo Sheng(盛宇波)3,4, Lan Zhou(周澜)1,3
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

Single-photon entanglement (SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization-time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization-time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.

Keywords:  single-photon entanglement      noiseless linear amplification      polarization-time-bin qudit      complete and partial photon loss  
Received:  18 September 2018      Revised:  24 October 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 11747161), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the China Postdoctoral Science Foundation (Grant No. 2018M642293).

Corresponding Authors:  Lan Zhou     E-mail:  zhoul@njupt.edu.cn

Cite this article: 

Ling-Quan Chen(陈灵泉), Yu-Bo Sheng(盛宇波), Lan Zhou(周澜) Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit 2019 Chin. Phys. B 28 010302

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Wang M Y and Yan F L 2016 Quantum Inf. Process. 15 3383
[3] Li T C and Yin Z Q 2016 Sci. Bull. 61 163
[4] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[5] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[6] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[7] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[8] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[9] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[10] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[11] Tan X Q and Zhang X Q 2016 Quantum Inf. Process. 15 2137
[12] Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
[13] Ekert A K 1991 Phys. Rev. Lett. 67 661
[14] Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
[15] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[16] Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[17] Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
[18] Guerra A G D H, Rios F F S and Ramos R V 2016 Quantum Inf. Process. 15 4747
[19] Huang W, Su Q, Xu B J, Liu B, Fan F, Jia H Y and Yang Y H 2016 Sci. China-Phys. Mech. Astron. 59 120311
[20] Ye T Y 2015 Sci. China-Phys. Mech. Astron. 58 1
[21] Heng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China-Phys. Mech. Astron. 58 1
[22] Zhang J, Mu Q X and Zhang W Z 2018 Chin. Phys. B 27 040304
[23] Shi X 2017 Chin. Phys. B 26 120303
[24] Yang F L, Guo Y, Shi J J, Wang H L and Pan J J 2017 Chin. Phys. B 26 100303
[25] Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[26] Silberhorn C, Korolkova N and Leuchs G 2002 Phys. Rev. Lett. 88 167902
[27] Duan L M, Lukin M D, Cirac J T and Zoller P 2001 Nature 414 413
[28] Salart D, Landry O, Sangouard N, Gisin N, Herrmann H, Sanguinetti B, Simon C, Sohler W, Thew R T, Thomas A and Zbinden H 2010 Phys. Rev. Lett. 104 180504
[29] Guerreiro T, Monteiro F and Martin A 2016 Phys. Rev. Lett. 117 070404
[30] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[31] Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
[32] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
[33] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference Computers, Systems, and Signal Processing, 1984, Bangalore, India, pp. 175-195
[34] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[35] Kok P, Munro W J, Nemoto K, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[36] Marcikic I, Riedmatten H de, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509
[37] Thew R T, Tanzilli S, Tittel W, Zbinden H and Gisin N 2002 Phys. Rev. A 66 062304
[38] Marcikic I, Riedmatten H de, Tittel W, Zbinden H, Legré M and Gisin N 2004 Phys. Rev. Lett. 93 180502
[39] Inagaki T, Matsuda N, Tadanaga O and Takesue H 2013 Opt. Express 21 23241
[40] Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W 2016 Nat. Photon. 10 676
[41] Sun Q C, Mao Y L, Chen S J, Zhang W, Jiang Y F, Zhang Y B, Zhang W J, Miki S, Yamashita T, Terai H, Jiang X, Chen T Y, You L X, Chen X F, Wang Z, Fan J Y, Zhang Q and Pan J W 2016 Nat. Photon. 10 671
[42] Yoo J, Choi Y, Cho Y W, Han S W, Lee S Y, Moon S, Oh K and Kim Y S 2018 Opt. Commun. 419 30
[43] Duan L M, Lukin M D, Cirac J T and Zoller P 2001 Nature 414 413
[44] Ralph T C and Lund A P 2009 Proceedings of the 9th International Conference on Quantum Communication Measurement and Computing (Lvovsky A, Ed.) pp. 155-160
[45] Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501
[46] Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
[47] Curty M and Moroder T 2011 Phys. Rev. A 84 010304
[48] Pitkanen D, Ma X, Wickert R, Loock P van and Lütkenhaus N 2011 Phys. Rev. A 84 022325
[49] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
[50] Zhang S L, Yang S, Zou X B, Shi B S and Guo G C 2012 Phys. Rev. A 86 034302
[51] Wang T J, Cao C and Wang C 2014 Phys. Rev. A 89 052303
[52] Wang T J and Wang C 2015 Opt. Express 23 31550
[53] McMahon N A, Lund A P and Ralph T C 2014 Phys. Rev. A 89 023846
[54] Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324
[55] Minář J, Riedmatten H de and Sangouard N 2012 Phys. Rev. A 85 032313
[56] Zhou L and Sheng Y B 2015 Laser Phys. Lett. 12 045203
[57] Monteiro F, Verbanis E, Caprara V Vivoli, Martin A, Gisin N, Zbinden H and Thew R T 2017 Quantum Sci. Technol. 2 024008
[58] Meyer Scott E, Bula M, Bartkiewicz K, Černoch A, Soubusta J, Jennewein T and Lemr K 2013 Phys. Rev. A 88 012327
[59] Ou Yang Y, Feng Z F, Zhou L and Sheng Y B 2015 Quantum Inf. Process. 14 635
[60] Ou Yang Y, Feng Z F, Zhou L and Sheng Y B 2016 Laser Phys. 26 015204
[61] Zhou L, Ou Yang Y, Wang L and Sheng Y B 2017 Quantum Inf. Process. 16 151
[62] Feng Z F, Ou Yang Y, Zhou L and Sheng Y B 2015 Quantum Inf. Process. 14 3693
[63] Bruno N, Pini V, Martin A, Verma V B, Nam S W, Mirin R, Lita A, Marsili F, Korzh B, Bussieres F, Sangouard N, Zbinden H, Gisin N and Thew R 2016 Opt. Express 24 125
[64] Kocsis S, Xiang G Y, Ralph T C and Pryde G J 2013 Nat. Phys. 9 23
[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[7] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[14] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[15] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
No Suggested Reading articles found!