Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010203    DOI: 10.1088/1674-1056/28/1/010203
GENERAL Prev   Next  

Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts

Deli Wang(王德莉)1, Wei Xu(徐伟)1, Xudong Gu(谷旭东)2
1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China;
2 Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately treated as equivalent terms associated with effects. Then, the free vibro-impact (VI) system is absorbed to describe the periodic motion without impacts and quasi-periodic motion with impacts based upon the level of system energy. The stochastic averaging of energy envelope (SAEE) is adopted to seek the stationary probability density functions (PDFs). The detailed theoretical results for Van der Pol viscoelastic VI system with the right unilateral nonzero offset barrier are solved to demonstrate the important effects of the viscoelastic damping and nonzero rigid barrier impacts condition. Monte Carlo (MC) simulation is also performed to verify the reliability of the suggested approach. The stochastic P-bifurcation caused by certain system parameters is further explored. The variation of elastic modulus from negative to zero and then to positive witnesses the evolution process of stochastic P-bifurcation. From the vicinity of the common value to a wider range, the relaxation time induces the stochastic P-bifurcation in the two interval schemes.

Keywords:  viscoelastic system      right unilateral nonzero offset barrier impacts      stochastic averaging of energy envelope (SAEE)      stochastic P-bifurcation  
Received:  29 June 2018      Revised:  13 November 2018      Accepted manuscript online: 
PACS:  02.50.Cw (Probability theory)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
  05.10.Gg (Stochastic analysis methods)  
  05.40.Ca (Noise)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11872305 and 11872307) and the Excellent Doctorate Cultivating Foundation of Northwestern Polytechnical University, China.

Corresponding Authors:  Wei Xu     E-mail:  weixu@nwpu.edu.cn

Cite this article: 

Deli Wang(王德莉), Wei Xu(徐伟), Xudong Gu(谷旭东) Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts 2019 Chin. Phys. B 28 010203

[1] Mrlík M, Ilcikova M, Sedlacik M, Mosnacek J, Peer P and Filip P 2014 Colloid Polym. Sci. 292 2137
[2] Arenas J P and Crocker M J 2010 Sound Vib. 44 12
[3] Lu L M, Wen J H, Zhao H G and Wen X S 2014 Acta Phys. Sin. 63 154301 (in Chinese)
[4] Kiik J C, Kurasov P and Usman M 2015 Phys. Lett. A 379 1871
[5] Khan Z, El Naggar M and Cascante G 2011 J. Franklin I. 348 1363
[6] Findley W N and Davis F A 2013 Creep and Relaxation of Nonlinear Viscoelastic Materials (Amsterdam: North-Holland)
[7] Del Nobile M, Chillo S, Mentana A and Baiano A 2007 J. Food Eng. 78 978
[8] Renaud F, Dion J L, Chevallier G, Tawfiq I and Lemaire R 2011 Mech. Syst. Signal. Pr. 25 991
[9] Christensen R 2012 Theory of Viscoelasticity: an Introduction (New York: Academic Press)
[10] Roscoe R 1950 Br. J. Appl. Phys. 1 171
[11] Drozdov A D 1998 Viscoelastic Structures: Mechanics of Growth and Aging (San Diego: Academic Press)
[12] de Espíndola J J, Bavastri C A and Lopes E M 2010 J. Franklin I. 347 102
[13] Han X and Wang M 2009 Math. Methods Appl. Sci. 32 346
[14] Zhu W Q 1992 Random Vibration (Beijing: Science Press) (in Chinese)
[15] Potapov V 1997 J. Appl. Math. Mech. 61 287
[16] Zhu W Q and Cai G Q 2011 Internat. J. Non-Linear Mech. 46 720
[17] Huang Q H and Xie W C 2008 J. Appl. Mech. 75 021012
[18] Di Paola M, Failla G and Pirrotta A 2012 Probabilist. Eng. Mech. 28 85
[19] Soize C and Poloskov I E 2012 Comput. Math. Appl. 64 3594
[20] Zhu W Q 1996 Appl. Mech. Rev. 49 S72
[21] Brogliato B 1996 Nonsmooth Impact Mechanics: Models, Dynamics and Control, LNCIS 220 (Berlin: Springer Verlag)
[22] Shaw S and Holmes P 1983 J. Appl. Mech. 50 849
[23] Dankowicz H and Nordmark A B 2000 Phys. D 136 280
[24] Dimentberg M and Iourtchenko D 2004 Nonlinear Dynam. 36 229
[25] Feng Q 2003 Comput. Methods Appl. Mech. Eng. 192 2339
[26] Feng Q and He H 2003 Eur. J. Mech. A Solids 22 267
[27] Namachchivaya N S and Park J H 2005 J. Appl. Mech. 72 862
[28] Park J H and Namachchivaya N S 2004 ASME 2004 International Mechanical Engineering Congress and Exposition November 13-19, 2004 Anaheim, USA, pp. 189-200
[29] Zhuravlev V F 1976 Mech. Solids 11 23
[30] Wu Y and Zhu W Q 2008 Phys. Lett. A 372 623
[31] Feng J, Xu W and Wang R 2008 J. Sound Vib. 309 730
[32] Dimentberg M, Gaidai O and Naess A 2009 Internat. J. Non-Linear Mech. 44 791
[33] Wang D L, Xu W and Zhao X R 2016 Chaos 26 033103
[34] Feng J Q, Xu W and Niu Y J 2010 Acta Phys. Sin. 59 157 (in Chinese)
[35] Kumar P, Narayanan S and Gupta S 2014 Probabilist. Eng. Mech. 38 143
[36] Kumar P, Narayanan S and Gupta S 2016 Nonlinear Dynam. 85 439
[37] Kumar P, Narayanan S and Gupta S 2017 Int. J. Mech. Sci. 127 103
[38] Su M B and Rong H W 2011 Chin. Phys. B 20 060501
[39] Rong H W, Wang X D, Xu W and Fang T 2005 Acta Phys. Sin. 54 4610 (in Chinese)
[40] Ma S J, Xu W and Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese)
[41] Yang L H, Ge Y and Ma X K 2017 Acta Phys. Sin. 66 190501 (in Chinese)
[42] Li W, Zhang M T and Zhao J F 2017 Chin. Phys. B 26 090501
[43] Kumar P, Narayanan S and Gupta S 2016 Probabilist. Eng. Mech. 45 70
[44] Kumar P, Narayanan S and Gupta S 2016 Procedia Eng. 144 998
[45] Zhu W Q and Lin Y K 1991 J. Eng. Mech. 117 1890
[46] Xu W, He Q, Rong H W and Fang T 2003 Proceedings of the Fifth International Conference on Stochastic Structural Dynamics-SSD03 (Zhu W Q Ed.) (Boca Raton: CRC Press) pp. 509-515
[47] Dtchetgnia Djeundam S, Yamapi R, Kofane T and Aziz-Alaoui M 2013 Chaos 23 033125
[48] Arnold L 2013 Random Dynamical Systems (Berlin: Springer-Verlag)
[49] Zakharova A, Feoktistov A, Vadivasova T and Schöll E 2013 Eur. Phys. J. Spec. TOP. 222 2481
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks
Siying Chen(陈偲颖), Hongxing Liu(刘红星). Chin. Phys. B, 2020, 29(4): 040701.
[3] Pedestrian choice behavior analysis and simulation of vertical walking facilities in transfer station
Yong-Xing Li(李永行), Hong-Fei Jia(贾洪飞), Jun Li(李军), Ya-Nan Zhou(周亚楠), Zhi-Lu Yuan(原志路), Yan-Zhong Li(李延忠). Chin. Phys. B, 2016, 25(10): 108901.
[4] Ghost imaging based on Pearson correlation coefficients
Yu Wen-Kai (俞文凯), Yao Xu-Ri (姚旭日), Liu Xue-Feng (刘雪峰), Li Long-Zhen (李龙珍), Zhai Guang-Jie (翟光杰). Chin. Phys. B, 2015, 24(5): 054203.
[5] Modeling walking behavior of pedestrian groups with floor field cellular automaton approach
Lu Li-Li (陆丽丽), Ren Gang (任刚), Wang Wei (王炜), Wang Yi (王义). Chin. Phys. B, 2014, 23(8): 088901.
[6] Improved locality-sensitive hashing method for the approximate nearest neighbor problem
Lu Ying-Hua (陆颖华), Ma Ting-Huai (马廷淮), Zhong Shui-Ming (钟水明), Cao Jie (曹杰), Wang Xin (王新), Abdullah Al-Dhelaan. Chin. Phys. B, 2014, 23(8): 080203.
[7] Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions
Li Xiang (李翔), Duan Xiao-Yin (段晓茵), Dong Li-Yun (董力耘). Chin. Phys. B, 2012, 21(10): 108901.
[8] Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability
Tian Chuan(田川) and Sun Di-Hua(孙棣华). Chin. Phys. B, 2010, 19(12): 120501.
[9] Topological probability and connection strength induced activity in complex neural networks
Wei Du-Qu(韦笃取), Zhang Bo(张波), Qiu Dong-Yuan(丘东元), and Luo Xiao-Shu(罗晓曙). Chin. Phys. B, 2010, 19(10): 100513.
[10] Probabilistic joint remote preparation of a high-dimensional equatorial quantum state
Zhan You-Bang(詹佑邦),Zhang Qun-Yong(张群永), and Shi Jin(施锦). Chin. Phys. B, 2010, 19(8): 080310.
[11] Multi-agent coordination in directed moving neighbourhood random networks
Shang Yi-Lun (尚轶伦). Chin. Phys. B, 2010, 19(7): 070201.
[12] A novel evolving scale-free model with tunable attractiveness
Liu Xuan (刘绚), Liu Tian-Qi (刘天琪), Wang Hao (王昊), Li Xing-Yuan (李兴源). Chin. Phys. B, 2010, 19(7): 070204.
[13] A new form of Tsallis distribution based on the probabilistically independent postulate
Du Jiu-Lin(杜九林). Chin. Phys. B, 2010, 19(7): 070501.
[14] Effect of following strength on pedestrian counter flow
Kuang Hua (邝华), Li Xing-Li (李兴莉), Wei Yan-Fang (韦艳芳), Song Tao (宋涛), Dai Shi-Qiang (戴世强). Chin. Phys. B, 2010, 19(7): 070517.
[15] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan (王月媛), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2010, 19(7): 074206.
No Suggested Reading articles found!