Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010301    DOI: 10.1088/1674-1056/28/1/010301
GENERAL Prev   Next  

Direct measurement of the concurrence of hybrid entangled state based on parity check measurements

Man Zhang(张曼)1, Lan Zhou(周澜)2, Wei Zhong(钟伟)1,3, Yu-Bo Sheng(盛宇波)1,3
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

The hybrid entangled state is widely discussed in quantum information processing. In this paper, we propose the first protocol to directly measure the concurrence of the hybrid entangled state. To complete the measurement, we design parity check measurements (PCMs) for both the single polarization qubit and the coherent state. In this protocol, we perform three rounds of PCMs. The results show that we can convert the concurrence into the success probability of picking up the correct states from the initial entangled states. This protocol only uses polarization beam splitters, beam splitters, and weak cross-Kerr nonlinearities, which is feasible for future experiments. This protocol may be useful in future quantum information processing.

Keywords:  hybrid entangled state      quantum computation      parity measurement      concurrence  
Received:  25 September 2018      Revised:  17 October 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 11747161) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波) Direct measurement of the concurrence of hybrid entangled state based on parity check measurements 2019 Chin. Phys. B 28 010301

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[6] Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[9] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[10] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[11] Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
[12] Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603
[13] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[14] Bang J, Ryu J, Yoo S, Pawlowski M and Lee J 2014 New J. Phys. 16 073017
[15] Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
[16] Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
[17] Liu L, Gao T and Yan F L 2018 Chin. Phys. B 27 020306
[18] Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A and Deng F G 2017 Sci. China Phys. Mech. Astron. 60 120313
[19] Qin H W, Tang W K S and Tso R 2018 Quantum Inf. Process. 17 152
[20] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China Phys. Mech. Astron. 61 090312
[21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[22] Kwiat P G 1997 J. Mod. Opt. 44 2173
[23] Vallone G, Donati G, Ceccarelli R and Mataloni P 2010 Phys. Rev. A 81 052301
[24] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[25] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[26] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[27] Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
[28] Liu Q and Zhang M 2015 Phys. Rev. A 91 062321
[29] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[30] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[31] Steinlechner F, Ecker S, Fink M, Liu B, Bavaresco J, Huber M, Scheidl T and Ursin R 2017 Nat. Commun. 8 15971
[32] He Y Q, Ding D, Tao P, Yan F L and Gao T 2018 Acta Phys. Sin. 67 060302 (in Chinese)
[33] Van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[34] Munro W J, Van Meter R, Louis S G R and Nemoto K 2008 Phys. Rev. Lett. 101 040502
[35] Bruno N, Martin A, Sekatski P, Sangouard N, Thew R T and Gisin N 2013 Nat. Phys. 9 545
[36] Park K, Lee S W and Jeong H 2012 Phys. Rev. A 86 062301
[37] Kwon H and Jeong H 2013 Phys. Rev. A 88 052127
[38] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[39] Lee S W and Jeong H 2013 Phys. Rev. A 87 022326
[40] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564
[41] Kwon H and Jeong H 2015 Phys. Rev. A 91 012340
[42] Guo R, Zhou L, Gu S P, Wang X F and Sheng Y B 2016 Chin. Phys. B 25 030302
[43] Parker R C, Joo J, Razavi M and Spiller T P 2017 J. Opt. 19 104004
[44] Li S J, Yan H M, He Y Y and Wang H 2018 Phys. Rev. A 98 022334
[45] Jeong H, Hang M and Kwon H 2015 Opt. Commun. 337 12
[46] Bennett C H, DiVincenzo D P, Smolinand J A and Wootters W K 1996 Phys. Rev. A 54 3824
[47] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[48] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[49] Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
[50] Rehacek J, Englertand B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
[51] Ling A, Soh K P, Lamas-Linares A and Kurtsiefer C 2006 Phys. Rev. A 74 022309
[52] Wootters W K 1998 Phys. Rev. Lett. 80 2445
[53] Wootters W K 2001 Quant. Inf. Comput. 1 27
[54] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[55] Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
[56] Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
[57] Zhang L H, Yang M and Cao Z L 2013 Phys. Lett. A 377 1421
[58] Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
[59] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
[60] Sheng Y B, Guo R, Pan J, Zhou L and Wang X F 2015 Quant. Inf. Process. 14 963
[61] Liu J, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 070309
[62] Zhou L and Sheng Y B 2015 Entropy 17 4293
[63] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[64] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[65] Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308
[66] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[67] He B, Nadeem M and Bergou J A 2009 Phys. Rev. A 79 035802
[68] Xiu X M, Li Q Y, Lin Y F, Dong H K, Dong L and Gao Y J 2016 Phys. Rev. A 94 042321
[69] Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
[70] He Y Q, Ding D, Yan F L and Gao T 2015 Opt. Express 23 21671
[71] Dong L, Lin Y F, Li Q Y, Dong H K, Xiu X M and Gao Y J 2016 Ann. Phys. 371 287
[72] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[73] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 66 063814
[74] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[75] Feizpour A, Hallaji M, Dmochowski G and Steinberg A M 2015 Nat. Phys. 11 905
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[4] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[7] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[8] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[9] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[10] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[11] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[12] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[13] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[14] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[15] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
No Suggested Reading articles found!