|
|
Direct measurement of the concurrence of hybrid entangled state based on parity check measurements |
Man Zhang(张曼)1, Lan Zhou(周澜)2, Wei Zhong(钟伟)1,3, Yu-Bo Sheng(盛宇波)1,3 |
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract The hybrid entangled state is widely discussed in quantum information processing. In this paper, we propose the first protocol to directly measure the concurrence of the hybrid entangled state. To complete the measurement, we design parity check measurements (PCMs) for both the single polarization qubit and the coherent state. In this protocol, we perform three rounds of PCMs. The results show that we can convert the concurrence into the success probability of picking up the correct states from the initial entangled states. This protocol only uses polarization beam splitters, beam splitters, and weak cross-Kerr nonlinearities, which is feasible for future experiments. This protocol may be useful in future quantum information processing.
|
Received: 25 September 2018
Revised: 17 October 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 11747161) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Yu-Bo Sheng
E-mail: shengyb@njupt.edu.cn
|
Cite this article:
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波) Direct measurement of the concurrence of hybrid entangled state based on parity check measurements 2019 Chin. Phys. B 28 010301
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[3] |
Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
|
[6] |
Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
|
[7] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[8] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[9] |
Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
|
[10] |
Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
|
[11] |
Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
|
[12] |
Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603
|
[13] |
Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
|
[14] |
Bang J, Ryu J, Yoo S, Pawlowski M and Lee J 2014 New J. Phys. 16 073017
|
[15] |
Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
|
[16] |
Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
|
[17] |
Liu L, Gao T and Yan F L 2018 Chin. Phys. B 27 020306
|
[18] |
Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A and Deng F G 2017 Sci. China Phys. Mech. Astron. 60 120313
|
[19] |
Qin H W, Tang W K S and Tso R 2018 Quantum Inf. Process. 17 152
|
[20] |
Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China Phys. Mech. Astron. 61 090312
|
[21] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[22] |
Kwiat P G 1997 J. Mod. Opt. 44 2173
|
[23] |
Vallone G, Donati G, Ceccarelli R and Mataloni P 2010 Phys. Rev. A 81 052301
|
[24] |
Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
|
[25] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[26] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[27] |
Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
|
[28] |
Liu Q and Zhang M 2015 Phys. Rev. A 91 062321
|
[29] |
Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
|
[30] |
Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
|
[31] |
Steinlechner F, Ecker S, Fink M, Liu B, Bavaresco J, Huber M, Scheidl T and Ursin R 2017 Nat. Commun. 8 15971
|
[32] |
He Y Q, Ding D, Tao P, Yan F L and Gao T 2018 Acta Phys. Sin. 67 060302 (in Chinese)
|
[33] |
Van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
|
[34] |
Munro W J, Van Meter R, Louis S G R and Nemoto K 2008 Phys. Rev. Lett. 101 040502
|
[35] |
Bruno N, Martin A, Sekatski P, Sangouard N, Thew R T and Gisin N 2013 Nat. Phys. 9 545
|
[36] |
Park K, Lee S W and Jeong H 2012 Phys. Rev. A 86 062301
|
[37] |
Kwon H and Jeong H 2013 Phys. Rev. A 88 052127
|
[38] |
Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
|
[39] |
Lee S W and Jeong H 2013 Phys. Rev. A 87 022326
|
[40] |
Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564
|
[41] |
Kwon H and Jeong H 2015 Phys. Rev. A 91 012340
|
[42] |
Guo R, Zhou L, Gu S P, Wang X F and Sheng Y B 2016 Chin. Phys. B 25 030302
|
[43] |
Parker R C, Joo J, Razavi M and Spiller T P 2017 J. Opt. 19 104004
|
[44] |
Li S J, Yan H M, He Y Y and Wang H 2018 Phys. Rev. A 98 022334
|
[45] |
Jeong H, Hang M and Kwon H 2015 Opt. Commun. 337 12
|
[46] |
Bennett C H, DiVincenzo D P, Smolinand J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[47] |
Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
|
[48] |
James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
|
[49] |
Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
|
[50] |
Rehacek J, Englertand B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
|
[51] |
Ling A, Soh K P, Lamas-Linares A and Kurtsiefer C 2006 Phys. Rev. A 74 022309
|
[52] |
Wootters W K 1998 Phys. Rev. Lett. 80 2445
|
[53] |
Wootters W K 2001 Quant. Inf. Comput. 1 27
|
[54] |
Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
|
[55] |
Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
|
[56] |
Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
|
[57] |
Zhang L H, Yang M and Cao Z L 2013 Phys. Lett. A 377 1421
|
[58] |
Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
|
[59] |
Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
|
[60] |
Sheng Y B, Guo R, Pan J, Zhou L and Wang X F 2015 Quant. Inf. Process. 14 963
|
[61] |
Liu J, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 070309
|
[62] |
Zhou L and Sheng Y B 2015 Entropy 17 4293
|
[63] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[64] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[65] |
Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308
|
[66] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[67] |
He B, Nadeem M and Bergou J A 2009 Phys. Rev. A 79 035802
|
[68] |
Xiu X M, Li Q Y, Lin Y F, Dong H K, Dong L and Gao Y J 2016 Phys. Rev. A 94 042321
|
[69] |
Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
|
[70] |
He Y Q, Ding D, Yan F L and Gao T 2015 Opt. Express 23 21671
|
[71] |
Dong L, Lin Y F, Li Q Y, Dong H K, Xiu X M and Gao Y J 2016 Ann. Phys. 371 287
|
[72] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[73] |
Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 66 063814
|
[74] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[75] |
Feizpour A, Hallaji M, Dmochowski G and Steinberg A M 2015 Nat. Phys. 11 905
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|