Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060311    DOI: 10.1088/1674-1056/ac01e3
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
TOPICAL REVIEW—Quantum computation and quantum simulation Prev   Next  

Quantum computation and simulation with vibrational modes of trapped ions

Wentao Chen(陈文涛)1,†, Jaren Gan2,†, Jing-Ning Zhang(张静宁)3,†, Dzmitry Matuskevich2,4,†, and Kihwan Kim(金奇奂)1,†
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore, Singapore
Abstract  Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert space. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.
Keywords:  quantum computation      quantum simulation      trapped ions      vibrational modes  
Received:  13 January 2021      Revised:  07 April 2021      Accepted manuscript online:  17 May 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  37.10.Ty (Ion trapping)  
  63.20.-e (Phonons in crystal lattices)  
Corresponding Authors:  Wentao Chen, Jaren Gan, Jing-Ning Zhang, Dzmitry Matuskevich, Kihwan Kim     E-mail:  chen-wt17@mails.tsinghua.edu.cn;jarengan@quantumlah.org;zhangjn@baqis.ac.cn;phymd@nus.edu.sg;kimkihwan@mail.tsinghua.edu.cn

Cite this article: 

Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂) Quantum computation and simulation with vibrational modes of trapped ions 2021 Chin. Phys. B 30 060311

[1] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[2] Häffner H, Roos C F and Blatt R 2008 Phys. Rep. 469
[3] Blatt R and Wineland D 2008 Nature 453 1008
[4] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 464 45
[5] Monroe C and Kim J 2013 Science 339 1164
[6] Wang Y, Um M, Zhang J, An S, Lyu M, Zhang J N, Duan L M, Yum D and Kim K 2017 Nat. Photon. 11 646
[7] Wang P, Luan C Y, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J and Kim K 2021 Nat. Commun. 12 1
[8] Harty T P, Allcock D T C, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N and Lucas D M 2014 Phys. Rev. Lett. 113 220501
[9] Ballance C, Harty T, Linke N, Sepiol M and Lucas D 2016 Phys. Rev. Lett. 117 060504
[10] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, et al. 2016 Phys. Rev. Lett. 117 060505
[11] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hansel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[12] Pogorelov I, Feldker T, Marciniak C D, et al. 2021 arXiv:2101.11390 [quant-ph]
[13] Friis N, Marty O, Maier C, et al. 2018 Phys. Rev. X 8 021012
[14] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[15] McCormick K C, Keller J, Burd S C, Wineland D J, Wilson A C and Leibfried D 2019 Nature 572 86
[16] Alonso J, Leupold F M, Solèr Z, Fadel M, Marinelli M, Keitch B C, Negnevitsky V and Home J P 2016 Nat. Commun. 7 11243
[17] Paternostro M, Kim M S and Knight P L 2005 Phys. Rev. A 71 022311
[18] Ortiz-Gutiérrez L, Gabrielly B, Muñoz L F, Pereira K T, Filgueiras J G and Villar A S 2017 Opt. Commun. 397 166
[19] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[20] Lau H K, Pooser R, Siopsis G and Weedbrook C 2017 Phys. Rev. Lett. 118 080501
[21] Aaronson S and Arkhipov A 2011 The computational complexity of linear optics Proceedings of the forty-third annual ACM symposium on theory of computing pp. 333–342
[22] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 250505
[23] Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y and Pan J W 2019 Phys. Rev. Lett. 123 250503
[24] Neville A, Sparrow C, Clifford R, Johnston E, Birchall P M, Montanaro A and Laing A 2017 Nat. Phys. 13 1153
[25] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460
[26] An S, Um M, Lv D, Lu Y, Zhang J, Quan H, Yin Z, Zhang J N and Kim K 2015 Nat. Phys. 11 193
[27] Um M, Zhang J, Lv D, Lu Y, An S, Zhang J N, Nha H, Kim M and Kim K 2016 Nat. Commun. 7 11410
[28] Lv D, An S, Um M, Zhang J, Zhang J N, Kim M S and Kim K 2017 Phys. Rev. A 95 043813
[29] Zhang J, Um M, Lv D, Zhang J N, Duan L M and Kim K 2018 Phys. Rev. Lett. 121 160502
[30] Shen Y, Lu Y, Zhang K, Zhang J, Zhang S, Huh J and Kim K 2018 Chem. Sci. 9 836
[31] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784
[32] Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318
[33] Menicucci N C, Van Loock P, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett. 97 110501
[34] Haljan P C, Brickman K A, Deslauriers L, Lee P J and Monroe C 2005 Phys. Rev. Lett. 94 153602
[35] Ding S, Loh H, Hablützel R, Gao M, Maslennikov G and Matsukevich D 2014 Phys. Rev. Lett. 113 073002
[36] Ding S, Maslennikov G, Hablützel R, Loh H and Matsukevich D 2017 Phys. Rev. Lett. 119 150404
[37] Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V and Matsukevich D 2019 Nat. Commun. 10 202
[38] Ding S, Maslennikov G, Hablützel R and Matsukevich D 2017 Phys. Rev. Lett. 119 193602
[39] van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[40] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[41] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[42] Hammerer K, Sørensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[43] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[44] Lau H K and Plenio M B 2016 Phys. Rev. Lett. 117 100501
[45] Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C and Monroe C 2010 Phys. Rev. Lett. 104 140501
[46] Wineland D J, Drullinger R E and Walls F L 1978 Phys. Rev. Lett. 40 1639
[47] Neuhauser W, Hohenstatt M, Toschek P and Dehmelt H 1978 Phys. Rev. Lett. 41 233
[48] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[49] Ejtemaee S and Haljan P 2017 Phys. Rev. Lett. 119 043001
[50] Morigi G, Eschner J and Keitel C H 2000 Phys. Rev. Lett. 85 4458
[51] Roos C, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
[52] Lin Y, Gaebler J P, Tan T R, Bowler R, Jost J D, Leibfried D and Wineland D J 2013 Phys. Rev. Lett. 110 153002
[53] Lechner R, Maier C, Hempel C, Jurcevic P, Lanyon B P, Monz T, Brownnutt M, Blatt R and Roos C F 2016 Phys. Rev. A 93 053401
[54] Scharnhorst N, Cerrillo J, Kramer J, Leroux I D, Wübbena J B, Retzker A and Schmidt P O 2018 Phys. Rev. A 98 023424
[55] Jordan E, Gilmore K A, Shankar A, Safavi-Naini A, Bohnet J G, Holland M J and Bollinger J J 2019 Phys. Rev. Lett. 122 053603
[56] Feng L, Tan W L, De A, Menon A, Chu A, Pagano G and Monroe C 2020 Phys. Rev. Lett. 125 053001
[57] Qiao M, Wang Y, Cai Z, Du B, Wang P, Luan C, Chen W, Noh H R and Kim K 2021 Phys. Rev. Lett. 126 023604
[58] Monroe C, Meekhof D, King B, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[59] Roos C, Zeiger T, Rohde H, Nägerl H, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713
[60] Monroe C, Meekhof D, King B and Wineland D J 1996 Science 272 1131
[61] Michael M H, Silveri M, Brierley R, Albert V V, Salmilehto J, Jiang L and Girvin S M 2016 Phys. Rev. X 6 031006
[62] Gottesman D, Kitaev A and Preskill J 2001 Phys. Rev. A 64 012310
[63] Ben-Kish A, DeMarco B, Meyer V, Rowe M, Britton J, Itano W M, Jelenković B M, Langer C, Leibfried D, Rosenband T and Wineland D J 2003 Phys. Rev. Lett. 90 037902
[64] Meekhof D M, Monroe C, King B E, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 76 1796
[65] Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S371
[66] Lo H Y, Kienzler D, de Clercq L, Marinelli M, Negnevitsky V, Keitch B C and Home J P 2015 Nature 521 336
[67] Kienzler D, Lo H Y, Keitch B, De Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V and Home J 2015 Science 347 53
[68] Olmschenk S, Younge K C, Moehring D L, Matsukevich D N, Maunz P and Monroe C 2007 Phys. Rev. A 76 052314
[69] Zhang X, Um M, Zhang J, An S, Wang Y, ling Deng D, Shen C, Duan L and Kim K 2013 Phys. Rev. Lett. 110 070401
[70] Ohira R, Mukaiyama T and Toyoda K 2019 Phys. Rev. A 100 060301
[71] Leibfried D, Meekhof D, King B, Monroe C, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 77 4281
[72] Ge W, Sawyer B C, Britton J W, Jacobs K, Bollinger J J and Foss-Feig M 2019 Phys. Rev. Lett. 122 030501
[73] Brown K R, Ospelkaus C, Colombe Y, Wilson A C, Leibfried D and Wineland D J 2011 Nature 471 196
[74] Harlander M, Lechner R, Brownnutt M, Blatt R and Hänsel W 2011 Nature 471 200
[75] Haze S, Tateishi Y, Noguchi A, Toyoda K and Urabe S 2012 Phys. Rev. A 85 031401
[76] Toyoda K, Hiji R, Noguchi A and Urabe S 2015 Nature 527 74
[77] Debnath S, Linke N, Wang S T, Figgatt C, Landsman K, Duan L M and Monroe C 2018 Phys. Rev. Lett. 120 073001
[78] Tamura M, Mukaiyama T and Toyoda K 2020 Phys. Rev. Lett. 124 200501
[79] Ohira R, Kume S, Takayama K, Muralidharan S, Takahashi H and Toyoda K 2021 Phys. Rev. A 103 012612
[80] Gan H C J, Maslennikov G, Tseng K W, Nguyen C and Matsukevich D 2020 Phys. Rev. Lett. 124 170502
[81] Filip R 2002 Phys. Rev. A 65 062320
[82] Buhrman H, Cleve R, Watrous J and de Wolf R 2001 Phys. Rev. Lett. 87 167902
[83] Gan Huat Chai J 2019 Continuous variables quantum information processing with trapped ions Ph.D. thesis (National University of Singapore)
[84] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259
[85] Fredkin E and Toffoli T 1982 Int. J. Theor. Phys. 21 219
[86] Patel R B, Ho J, Ferreyrol F, Ralph T C and Pryde G J 2016 Science Advances 2 e1501531
[87] Ono T, Okamoto R, Tanida M, Hofmann H F and Takeuchi S 2017 Sci. Rep. 7 45353
[88] Linke N M, Johri S, Figgatt C, Landsman K A, Matsuura A Y and Monroe C 2018 Phys. Rev. A 98 052334
[89] Gao Y Y, Lester B J, Chou K S, Frunzio L, Devoret M H, Jiang L, Girvin S M and Schoelkopf R J 2019 Nature 566 509
[90] Zhang K, Thompson J, Zhang X, Shen Y, Lu Y, Zhang S, Ma J, Vedral V, Gu M and Kim K 2019 Nat. Commun. 10 4692
[91] Dirac P A M 1957 The Principles of Quantum Mechanics (Oxford: Oxford University Press)
[92] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[93] Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R and Morsch O 2012 Nat. Phys. 8 147
[94] Zhang J, Zhang J, Zhang X and Kim K 2014 Phys. Rev. A 89 013608
[95] An S, Lv D, del Campo A and Kim K 2016 Nat. Commun. 7 12999
[96] Wunderlich C, Hannemann T, Körber T, Häffner H, Roos C, Hänsel W, Blatt R and Schmidt-Kaler F 2007 J. Mod. Opt. 54 1541
[97] Řeháĕk J, Hradil Z and Jezĕk M 2001 Phys. Rev. A 63 040303(R)
[98] Landau L D and Lifshitz E M 1976 Mechanics Vol. 1 (Course of Theoretical Physics) 3rd ed (Butterworth-Heinemann)
[99] Marquet C, Schmidt-Kaler F and James D F V 2003 Appl. Phys. B 76 199
[100] Nie X R, Roos C F and James D F 2009 Phys. Lett. A 373 422
[101] Roos C F, Monz T, Kim K, Riebe M, Häffner H, James D F V and Blatt R 2008 Phys. Rev. A 77 040302
[102] Ding S, Maslennikov G, Hablützel R and Matsukevich D 2018 Phys. Rev. Lett. 121 130502
[103] Shor P W 1995 Phys. Rev. A 52 R2493
[104] Steane A 1996 Proc. Roy. Soc. London. Ser. A: Math. Phys. Eng. Sci. 452 2551
[105] Nielsen M A and Chuang I 2002 Quantum computation and quantum information (American Association of Physics Teachers)
[106] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K and Home J 2019 Nature 566 513
[107] Flühmann C, Negnevitsky V, Marinelli M and Home J P 2018 Phys. Rev. X 8 021001
[108] Knill E, Laflamme R and Zurek W H 1998 Proc. Roy. Soc. London. Ser. A: Math. Phys. Eng. Sci. 454 365
[109] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[110] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[111] Sanders B C 1989 Phys. Rev. A 40 2417
[112] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 65 052104
[113] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[114] Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[115] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[116] Dowling J P 2008 Contemporary Phys. 49 125
[117] Afek I, Ambar O and Silberberg Y 2010 Science 328 879
[118] Wolfgramm F, Vitelli C, Beduini F A, Godbout N and Mitchell M W 2013 Nat. Photon. 7 28
[119] Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H and Pan X Y 2015 Nat. Commun. 6 6726
[120] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, et al. 2016 Phys. Rev. Lett. 117 210502
[121] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
[122] Chen Y A, Bao X H, Yuan Z S, Chen S, Zhao B and Pan J W 2010 Phys. Rev. Lett. 104 043601
[123] Wang H, Mariantoni M, Bialczak R C, Lenander M, Lucero E, Neeley M, O’Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M and Cleland A N 2011 Phys. Rev. Lett. 106 060401
[124] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[125] Cooper J J and Dunningham J A 2011 New J. Phys. 13 115003
[126] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[127] Crooks G E 1999 Phys. Rev. E 60 2721
[128] Hummer G and Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658
[129] Liphardt J, Dumont S, Smith S B, Tinoco I J and Bustamante C 2002 Science 296 1832
[130] Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I J and Bustamante C 2005 Nature 437 231
[131] Douarche F, Ciliberto S, Petrosyan A and Rabbiosi I 2005 Europhys. Lett. 70 593
[132] Bustamante C, Liphardt J and Ritort F 2005 Phys. Today 58 43
[133] Blickle V, Speck T, Helden L, Seifert U and Bechinger C 2006 Phys. Rev. Lett. 96 070603
[134] Harris N C, Song Y and Kiang C H 2007 Phys. Rev. Lett. 99 068101
[135] Saira O P, Yoon Y, Tanttu T, Möttönen M, Averin D V and Pekola J P 2012 Phys. Rev. Lett. 109 180601
[136] Jarzynski C 2011 Annu. Rev. Cond. Matt. Phys. 2 329
[137] Seifert U 2012 Rep. Prog. Phys. 75 126001
[138] Talkner P, Lutz E and Hänggi P 2007 Phys. Rev. E 75 050102(R)
[139] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[140] Tasaki H 2000 arXiv:cond-mat/0009244 [cond-mat.stat-mech]
[141] Kurchan J 2000 arXiv:cond-mat/0007360 [cond-mat.stat-mech]
[142] Mukamel S 2003 Phys. Rev. Lett. 90 170604
[143] Smith A, Lu Y, An S, Zhang X, Zhang J N, Gong Z, Quan H, Jarzynski C and Kim K 2018 New J. Phys. 20 013008
[144] Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604
[145] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
[146] Mitchison M T, Woods M P, Prior J and Huber M 2015 New J. Phys. 17 115013
[147] Brask J B and Brunner N 2015 Phys. Rev. E 92 062101
[148] Jankowiak H C, Stuber J L and Berger R 2007 J. Chem. Phys. 127 234101
[149] Huh J, Guerreschi G G, Peropadre B, McClean J R and Aspuru-Guzik A 2015 Nat. Photon. 9 615
[150] Duschinsky F 1937 Acta Physicochim. URSS 7 551
[151] Doktorov E V, Malkin I A and Man’ko V I 1977 J. Mol. Spectrosc. 64 302
[152] Ma X and Rhodes W 1990 Phys. Rev. A 41 4625
[153] Lund A P, Laing A, Rahimi-Keshari S, Rudolph T, O’Brien J L and Ralph T C 2014 Phys. Rev. Lett. 113 100502
[154] Rahimi-Keshari S, Lund A P and Ralph T C 2015 Phys. Rev. Lett. 114 060501
[155] Nimlos M and Ellison G 1986 J. Phys. Chem. 90 2574
[156] Lee C L, Yang S H, Kuo S Y and Chang J L 2009 J. Mol. Spectros. 256 279
[157] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Revision A.03 gaussian Inc. Wallingford CT
[158] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[159] Mezzacapo A, Casanova J, Lamata L and Solano E 2012 Phys. Rev. Lett. 109 200501
[160] Pedernales J, Lizuain I, Felicetti S, Romero G, Lamata L and Solano E 2015 Sci. Rep. 5 1
[161] Toyoda K, Matsuno Y, Noguchi A, Haze S and Urabe S 2013 Phys. Rev. Lett. 111 160501
[162] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Phys. Rev. X 8 021027
[163] Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[164] Gerritsma R, Kirchmair G, Zahringer F, Solano E, Blatt R and Roos C F 2010 Nature 463 68
[165] Casanova J, Lamata L, Egusquiza I, Gerritsma R, Roos C F, GarcíaRipoll J J and Solano E 2011 Phys. Rev. Lett. 107 260501
[166] Zhang X, Zhang K, Shen Y, Zhang S, Zhang J N, Yung M H, Casanova J, Pedernales J S, Lamata L, Solano E, et al. 2018 Nature Commun. 9 1
[167] de Neeve B, Nguyen T L, Behrle T and Home J 2020 arXiv:2010.09681 [quant-ph]
[168] Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J and Monroe C 2016 Rev. Sci. Instruments 87 053110
[169] Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D and Wineland D J 2012 Phys. Rev. Lett. 109 103001
[170] Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J and Monroe C 2006 Phys. Rev. Lett. 97 103007
[171] Havlíček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[4] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[5] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[6] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[7] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[8] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[9] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[10] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[11] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[12] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[13] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[14] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[15] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
No Suggested Reading articles found!