Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions |
Qing Yan(闫青)1,2 and Qing-Feng Sun(孙庆丰)1,3,4,† |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract Quantum computers are in hot-spot with the potential to handle more complex problems than classical computers can. Realizing the quantum computation requires the universal quantum gate set {T, H, CNOT} so as to perform any unitary transformation with arbitrary accuracy. Here we first briefly review the Majorana fermions and then propose the realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions. Elementary cells consist of a quantum anomalous Hall insulator surrounded by a topological superconductor with electric gates and quantum-dot structures, which enable the braiding operation and the partial exchange operation. After defining a qubit by four chiral Majorana fermions, the single-qubit T and H quantum gates are realized via one partial exchange operation and three braiding operations, respectively. The entangled CNOT quantum gate is performed by braiding six chiral Majorana fermions. Besides, we design a powerful device with which arbitrary two-qubit quantum gates can be realized and take the quantum Fourier transform as an example to show that several quantum operations can be performed with this space-limited device. Thus, our proposal could inspire further utilization of mobile chiral Majorana edge states for faster quantum computation.
|
Received: 14 October 2020
Revised: 26 December 2020
Accepted manuscript online: 03 February 2021
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
73.21.La
|
(Quantum dots)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303301), the National Natural Science Foundation of China (Grant No. 11921005), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219013). |
Corresponding Authors:
†Corresponding author. E-mail: sunqf@pku.edu.cn
|
Cite this article:
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰) Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions 2021 Chin. Phys. B 30 040303
|
1 Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) 2 Feynman R P 1982 Int. J. Theor. Phys. 21 467 3 Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 4 Benioff P 1982 J. Stat. Phys. 29 515 5 DiVincenzo D P 1995 Phys. Rev. A 51 1015 6 Knill E, Laflamme R and Milburn G J 2001 Nature 409 46 7 Blatt R and Wineland D 2008 Nature 453 1008 8 Xu P, He X D, Liu M, Wang J and Zhan M S 2019 Acta Phys. Sin. 68 030305 (in Chinese) 9 Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 10 Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305 11 Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308 12 Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786 13 Chiorescu I, Nakamura Y, Harmans C J and Mooij J E 2003 Science 299 1869 14 Zhong Y P, Li C Y, Wang H H and Chen Y 2013 Chin. Phys. B 22 110313 15 Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401 16 Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 17 Sarma S D, Freedman M and Nayak C 2015 npj Quantum Inf. 1 15001 18 Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137 19 Bravyi S 2006 Phys. Rev. A 73 042313 20 Kitaev A Y 2003 Ann. Phys. 303 2 21 Ivanov D A 2001 Phys. Rev. Lett. 86 268 22 Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113 23 Alicea J 2012 Rep. Prog. Phys. 75 076501 24 Kitaev A Y 2001 Phys.-Usp. 44 131 25 Qi J J, Liu H W, Jiang H and Xie X C 2019 Front. Phys. 14 43403 26 Li Y H, Liu J, Song J T, Jiang H, Sun Q F and Xie X C 2018 Sci. China Phys. Mech. Astron. 61 97411 27 Chen C Z, Jiang H, Xu D H and Xie X C 2020 Sci. China Phys. Mech. Astron. 63 107811 28 Yang Y T, Jia Z Y, Wu Y J, Xiao R C, Hang Z H, Jiang H and Xie X C 2020 Sci. Bull. 65 531 29 Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 30 Fu L and Kane C L 2009 Phys. Rev. B 79 161408(R) 31 Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001 32 Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002 33 Zheng H and Jia J F 2019 Chin. Phys. B 28 067403 34 Liu J, Wu Y, Sun Q F and Xie X C 2019 Phys. Rev. B 100 235131 35 Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 36 Tang H Z, Sun Q F, Liu J J and Zhang Y T 2019 Phys. Rev. B 99 235427 37 Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001 38 Mourik V, Zuo K, Frolov S M, Plissard S, Bakkers E P and Kouwenhoven L P 2012 Science 336 1003 39 Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602 40 Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182 41 Jäck B, Xie Y L, Li J, Jeon S, Bernevig B A and Yazdani A 2019 Science 364 1255 42 Laroche D, Bouman D, van Woerkom D J, Proutski A, Murthy C, Pikulin D I, Nayak C, van Gulik R J J, Nygard J, Krogstrup P, Kouwenhoven L P and Geresdi A 2019 Nat. Commun. 10 245 43 Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P 2011 Nat. Phys. 7 412 44 Halperin B I, Oreg Y, Stern A, Refael G, Alicea J and von Oppen F 2012 Phys. Rev. B 85 144501 45 Bonderson P, Freedman M and Nayak C 2008 Phys. Rev. Lett. 101 010501 46 Bonderson P, Freedman M and Nayak C 2009 Ann. Phys. 324 787 47 Fu L 2010 Phys. Rev. Lett. 104 056402 48 Vijay S and Fu L 2016 Phys. Rev. B 94 235446 49 Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305 50 Campbell E T, Terhal B M and Vuillot C 2017 Nature 549 172 51 Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324 52 Wang J 2020 Acta Phys. Sin. 69 117302 (in Chinese) 53 Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 54 He K, Ma X C, Chen X, Lu L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305 55 He K 2020 Physics 49 828 56 Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403 57 Akhmerov A R, Nilsson J and Beenakker C W J 2009 Phys. Rev. Lett. 102 216404 58 Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516 59 Zhang J, Zhao B, Zhou T and Yang Z 2016 Chin. Phys. B 25 117308 60 Wang J, Zhou Q, Lian B and Zhang S C 2015 Phys. Rev. B 92 064520 61 Yan Q, Zhou Y F and Sun Q F 2020 Chin. Phys. B 29 097401 62 Zhang Y T, Hou Z, Xie X C and Sun Q F 2017 Phys. Rev. B 95 245433 63 Zhou Y F, Hou Z, Zhang Y T and Sun Q F 2018 Phys. Rev. B 97 115452 64 Yan Q, Zhou Y F and Sun Q F 2019 Phys. Rev. B 100 235407 65 Zhou Y F, Hou Z, Lv P, Xie X and Sun Q F 2018 Sci. China Phys. Mech. Astron. 61 127811 66 He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294 67 Huang Y, Setiawan F and Sau J D 2018 Phys. Rev. B 97 100501(R) 68 Ji W and Wen X G 2018 Phys. Rev. Lett. 120 107002 69 Chen C Z, He J J, Xu D H and Law K T 2017 Phys. Rev. B 96 041118 70 Lian B, Wang J, Sun X Q, Vaezi A and Zhang S C 2018 Phys. Rev. B 97 125408 71 Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N and Chang C Z 2020 Science 367 64 72 Lian B, Sun X Q, Vaezi A, Qi X L and Zhang S C 2018 Proc. Natl. Acad. Sci. USA 115 10938 73 Zhou Y F, Hou Z and Sun Q F 2019 Phys. Rev. B 99 195137 74 Beenakker C W J, Baireuther P, Herasymenko Y, Adagideli I, Wang L and Akhmerov A R 2019 Phys. Rev. Lett. 122 146803 75 Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 76 Georgiev L S 2006 Phys. Rev. B 74 235112 77 Kaye P, Laflamme R and Mosca M 2007 An introduction to quantum computing (Oxford: Oxford University Press) 78 Beenakker C W J SciPostPhys. Lect. Notes 15 79 Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R and Long G L 2018 Acta Phys. Sin. 67 220301 (in Chinese) 80 Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Y and Zhao S P 2019 Chin. Phys. B 28 110303 81 Yan L, Yin W and Wang F W 2014 Chin. Phys. B 23 100303 82 Bäuerle C, Glattli D C, Meunier T, Portier F, Roche P, Roulleau P, Takada S and Waintal X 2018 Rep. Prog. Phys. 81 056503 83 Levitov L S, Lee H and Lesovik G B 1996 J. Math. Phys. 37 4845 84 Ivanov D A, Lee H W and Levitov L S 1997 Phys. Rev. B 56 6839 85 Keeling J, Klich I and Levitov L S 2006 Phys. Rev. Lett. 97 116403 86 Dubois J, Jullien T, Portier F, Roche P, Cavanna A, Jin Y, Wegscheider W, Roulleau P and Glattli D C 2013 Nature 502 659 87 Bocquillon E, Freulon V, Berroir J M, Degiovanni P, Pla\c cais B, Cavanna A, Jin Y and F\`eve G 2013 Science 339 1054 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|