Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes |
Abida Perveen1, Xin Zhang(张欣)2, Jia-Lun Tang(汤加仑)2, Deng-Bao Han(韩登宝)2, Shuai Chang(常帅)2, Luo-Gen Deng(邓罗根)1, Wen-Yu Ji(纪文宇)3, Hai-Zheng Zhong(钟海政)2 |
1 Department of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 Department of Physics, Jilin University, Changchun 130023, China |
|
|
Abstract Surface plasmonic effects of metallic particles have been known to be an effective method to improve the performances of light emitting didoes. In this work, we report the sputtered Au nanoparticles enhanced electroluminescence in inverted quantum dot light emitting diodes (ITO/Au NPs/ZnMgO/QDs/TFB/PEDOT:PSS/Al). By combining the time-resolved photoluminescence, transient electroluminescence, and ultraviolet photoelectron spectrometer measurements, the enhancement of the internal field enhanced exciton coupling to surface plasmons and the electron injection rate increasing with Au nanoparticles' incorporation can be explained. Phenomenological numerical calculations indicate that the electron mobility of the electron transport layer increases from 1.39×10-5 cm2/V·s to 1.91×10-5 cm2/V·s for Au NPs modified device. As a result, the maximum device luminescence is enhanced by 1.41 fold (from 14600 cd/cm2 to 20720 cd/cm2) and maximum current efficiency is improved by 1.29 fold (from 3.12 cd/A to 4.02 cd/A).
|
Received: 30 December 2017
Revised: 16 January 2018
Published: 05 August 2018
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21603012, 61735004, and 61722502). |
Corresponding Authors:
Shuai Chang, Hai-Zheng Zhong
E-mail: schang@bit.edu.cn;hzzhong@bit.edu.cn
|
Cite this article:
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政) Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes 2018 Chin. Phys. B 27 086101
|
[1] |
Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 07022
|
[2] |
Gong X, Yang Z, Walters G, Comin R, Ning Z, Beauregard E, Adinolfi V, Vozny O and Sargent E H 2016 Nat. Photon. 1 11
|
[3] |
Ji W, Wang T, Zhu B, Zhang H, Wang R, Zhang D, Chen L, Yang Q and Zhang H 2017 J. Mater. Chem. C 5 00514
|
[4] |
Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y, Zhang J, Ning Z and Yang X 2017 Adv. Mater. 27 04278
|
[5] |
Chang S, Zhang X, Wang Z W, Han D B, Tang J L, Bai Z and Zhong H Z IEEE J. Selec. Top. Quantum Electron 27 2688706
|
[6] |
Persano L, Catellani A, Dagdeviren C, Ma Y, Guo X, Huang Y, Calzolari A and Pisignano D 2016 Adv. Mater. 28 06381
|
[7] |
Yu R, Yin F Huanga X and Ji W 2017 J. Mater. Chem. 5 0514
|
[8] |
Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z and Lei W 2016 Opt. Express 24 000A33
|
[9] |
Chuang S H and Wuu D S 2015 SPIE 5 005949
|
[10] |
Shen H, Cao W, Shewmon N T, Yang C, Li L S and Xue J 2015 Nano Lett. 15 1211
|
[11] |
Zaiats G, Ikeda S, Kinge S and Kamat P V 2017 ACS Appl. Mater. Interfaces 9 07893
|
[12] |
Wang W, Peng H and Chen S 2016 J. Mater. Chem. C 4 04223
|
[13] |
Castan A, Kim H M and Jang J 2014 ACS Appl. Mater. Interfaces 6 04876
|
[14] |
Rad A G, Abbasi H and Afzali M H Phys. Proc. 22 032
|
[15] |
Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Voon D V, Char K and Lee S 2012 Nano Lett. 12 3003254
|
[16] |
Heo M, Cho H, Jung J W, Jeong J R, Park S and Kim J Y 2011 Adv. Mater. 23 5689
|
[17] |
Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 328
|
[18] |
Brogersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (New York: Springer)
|
[19] |
Okamoto K, Wang Z M and Neogi A 2010 Nanoscale Photonics and Optoelectronics (Springer Science, Japan)
|
[20] |
Wang H, L-Van Q, Assime A, Roux X L, Charra F, Chauvin N and Degiron A 2017 Adv. Opt. Mater. 17 00658
|
[21] |
Ji W, Jing P and Zhao J 2013 J. Mater. Chem. C 1 470
|
[22] |
Zhang X, Marocico C A, Lunz M, Gerard V A Gunko Y K, Lesnyak V, Gaponik N, Sucha A S, Rogach A L and Bradley A L 2014 ACS Nano 8 1273
|
[23] |
Kvitek O, Seigel J, Hunatowio V and Svorik V 2013 J. Nanomaterials 1 743684
|
[24] |
Lu L, Luo Z, Xu T and Yu L 2013 Nano Lett. 13 59
|
[25] |
Shaojian H, Jun L and Zhanao T 2013 Prog. Phys. 33 0542
|
[26] |
Stouwdam J W and Janssen R A J 2008 J. Mater. Chem. 18 1889
|
[27] |
Hines M A and Sionnest P G 1996 J. Phys. Chem. 100 468
|
[28] |
Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
|
[29] |
Shen H, Lin Q, Cao W, Yang C, Shewmon N T, Wang H, Niu J, Li L S and Xue J 2017 Nano Lett. 9 13583
|
[30] |
Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C and Lee S 2014 Adv. Mater. 4 00139
|
[31] |
Wang Z, Chen Z, Lan Z, Zhai X Du W and Gong Q 2007 Appl. Phys. Lett. 90 151119
|
[32] |
Kim N Y, Hong S H, Kang J W, Myoung N S, Yim S Y, Jung S, Lee K, Tu C W and Park S J 2015 RSC Adv. 5 15585
|
[33] |
Pinner D J, Friend R H and Tessler N 1999 J. Appl. Phys. 86 371488
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|