Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086101    DOI: 10.1088/1674-1056/27/8/086101
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes

Abida Perveen1, Xin Zhang(张欣)2, Jia-Lun Tang(汤加仑)2, Deng-Bao Han(韩登宝)2, Shuai Chang(常帅)2, Luo-Gen Deng(邓罗根)1, Wen-Yu Ji(纪文宇)3, Hai-Zheng Zhong(钟海政)2
1 Department of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 Department of Physics, Jilin University, Changchun 130023, China
Abstract  

Surface plasmonic effects of metallic particles have been known to be an effective method to improve the performances of light emitting didoes. In this work, we report the sputtered Au nanoparticles enhanced electroluminescence in inverted quantum dot light emitting diodes (ITO/Au NPs/ZnMgO/QDs/TFB/PEDOT:PSS/Al). By combining the time-resolved photoluminescence, transient electroluminescence, and ultraviolet photoelectron spectrometer measurements, the enhancement of the internal field enhanced exciton coupling to surface plasmons and the electron injection rate increasing with Au nanoparticles' incorporation can be explained. Phenomenological numerical calculations indicate that the electron mobility of the electron transport layer increases from 1.39×10-5 cm2/V·s to 1.91×10-5 cm2/V·s for Au NPs modified device. As a result, the maximum device luminescence is enhanced by 1.41 fold (from 14600 cd/cm2 to 20720 cd/cm2) and maximum current efficiency is improved by 1.29 fold (from 3.12 cd/A to 4.02 cd/A).

Keywords:  gold nanoparticles      plasmonic effect      quantum dots      light-emitting diodes  
Received:  30 December 2017      Revised:  16 January 2018      Published:  05 August 2018
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21603012, 61735004, and 61722502).

Corresponding Authors:  Shuai Chang, Hai-Zheng Zhong     E-mail:  schang@bit.edu.cn;hzzhong@bit.edu.cn

Cite this article: 

Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政) Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes 2018 Chin. Phys. B 27 086101

[1] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 07022
[2] Gong X, Yang Z, Walters G, Comin R, Ning Z, Beauregard E, Adinolfi V, Vozny O and Sargent E H 2016 Nat. Photon. 1 11
[3] Ji W, Wang T, Zhu B, Zhang H, Wang R, Zhang D, Chen L, Yang Q and Zhang H 2017 J. Mater. Chem. C 5 00514
[4] Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y, Zhang J, Ning Z and Yang X 2017 Adv. Mater. 27 04278
[5] Chang S, Zhang X, Wang Z W, Han D B, Tang J L, Bai Z and Zhong H Z IEEE J. Selec. Top. Quantum Electron 27 2688706
[6] Persano L, Catellani A, Dagdeviren C, Ma Y, Guo X, Huang Y, Calzolari A and Pisignano D 2016 Adv. Mater. 28 06381
[7] Yu R, Yin F Huanga X and Ji W 2017 J. Mater. Chem. 5 0514
[8] Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z and Lei W 2016 Opt. Express 24 000A33
[9] Chuang S H and Wuu D S 2015 SPIE 5 005949
[10] Shen H, Cao W, Shewmon N T, Yang C, Li L S and Xue J 2015 Nano Lett. 15 1211
[11] Zaiats G, Ikeda S, Kinge S and Kamat P V 2017 ACS Appl. Mater. Interfaces 9 07893
[12] Wang W, Peng H and Chen S 2016 J. Mater. Chem. C 4 04223
[13] Castan A, Kim H M and Jang J 2014 ACS Appl. Mater. Interfaces 6 04876
[14] Rad A G, Abbasi H and Afzali M H Phys. Proc. 22 032
[15] Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Voon D V, Char K and Lee S 2012 Nano Lett. 12 3003254
[16] Heo M, Cho H, Jung J W, Jeong J R, Park S and Kim J Y 2011 Adv. Mater. 23 5689
[17] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 328
[18] Brogersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (New York: Springer)
[19] Okamoto K, Wang Z M and Neogi A 2010 Nanoscale Photonics and Optoelectronics (Springer Science, Japan)
[20] Wang H, L-Van Q, Assime A, Roux X L, Charra F, Chauvin N and Degiron A 2017 Adv. Opt. Mater. 17 00658
[21] Ji W, Jing P and Zhao J 2013 J. Mater. Chem. C 1 470
[22] Zhang X, Marocico C A, Lunz M, Gerard V A Gunko Y K, Lesnyak V, Gaponik N, Sucha A S, Rogach A L and Bradley A L 2014 ACS Nano 8 1273
[23] Kvitek O, Seigel J, Hunatowio V and Svorik V 2013 J. Nanomaterials 1 743684
[24] Lu L, Luo Z, Xu T and Yu L 2013 Nano Lett. 13 59
[25] Shaojian H, Jun L and Zhanao T 2013 Prog. Phys. 33 0542
[26] Stouwdam J W and Janssen R A J 2008 J. Mater. Chem. 18 1889
[27] Hines M A and Sionnest P G 1996 J. Phys. Chem. 100 468
[28] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
[29] Shen H, Lin Q, Cao W, Yang C, Shewmon N T, Wang H, Niu J, Li L S and Xue J 2017 Nano Lett. 9 13583
[30] Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C and Lee S 2014 Adv. Mater. 4 00139
[31] Wang Z, Chen Z, Lan Z, Zhai X Du W and Gong Q 2007 Appl. Phys. Lett. 90 151119
[32] Kim N Y, Hong S H, Kang J W, Myoung N S, Yim S Y, Jung S, Lee K, Tu C W and Park S J 2015 RSC Adv. 5 15585
[33] Pinner D J, Friend R H and Tessler N 1999 J. Appl. Phys. 86 371488
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[3] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[4] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[5] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[6] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[7] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[8] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[9] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[10] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[11] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[12] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[13] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[14] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
[15] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
No Suggested Reading articles found!