Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085206    DOI: 10.1088/1674-1056/27/8/085206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Similarity principle of microwave argon plasma at low pressure

Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键)
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing, China
Abstract  In order to validate the similarity principle of microwave breakdown, a two-dimensional (2D) fluid model of low-pressure microwave argon plasma is established and solved by the finite-element method. Proportional conditions are used in this model to build three different breakdown processes that meet the premise of a similarity principle, and these breakdown processes are called “similar cases” in this paper. Similar cases have proportionately sized breakdown regions, where the ratio of frequency of incident microwave f to gas pressure p (f/p), and the reduced field E/p in them are kept the same. All the important physical parameters such as electron density, electron temperature, and reduced electric field can be obtained from the simulation of this model. The results show that the parameters between similar cases are in constant ratio without changing with time, which means that the similarity principle is also valid in microwave breakdown.
Keywords:  similarity principle      microwave plasma      low pressure      2D fluid model  
Received:  27 February 2018      Revised:  01 April 2018      Accepted manuscript online: 
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.65.-y (Plasma simulation)  
  51.50.+v (Electrical properties)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61331002), the National Key Basic Research Program of China (Grant No. 2013CB328903), and the Fundamental Research Funds for the Central Universities, China (Grant No. W15JB00510).
Corresponding Authors:  Jun-Hong Wang     E-mail:  wangjunh@bjtu.edu.cn

Cite this article: 

Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键) Similarity principle of microwave argon plasma at low pressure 2018 Chin. Phys. B 27 085206

[1] Bittencourt J A 1986 Int. J. Opt. 28 881
[2] Townsend J S 1915 Electricity in Gases (Oxford: Clarendon Press)
[3] Osmokrovic P 2006 Plasma Sources Sci. Technol. 15 703
[4] Dekić S, Osmokrović P, Vujisić M and Stanković K 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1185
[5] Paschen F 1889 Ann. Phys. 273 69
[6] Holm R 1924 Phys. Z. 25 497
[7] Margenau H 1948 Phys. Rev. 73 326
[8] Jones F L and Morgan G D 1951 Proc. Phys. Soc., London, Sect. B 64 560
[9] Fu Y Y, Luo H Y, Zou X B, Wang X X 2014 IEEE Trans. Plasma Sci. 42 1544
[10] Mezei P, Cserfalvi T, Jánossy M, Szöcs K and Kim H J 1999 J. Phys. D: Appl. Phys. 31 2818
[11] Vitruk P P, Baker H J and Hall D R 1994 IEEE J. Quantum Electron. 30 1623
[12] Mesyats G 2006 Phys. Usp. 49 1045
[13] Mesyats G A 2006 JEPT Lett. 83 19
[14] Zhao P C, Guo L X and Shu P P 2017 Chin. Phys. B 26 029201
[15] Fu Y Y, Yang S, Zou X B, Luo H Y and Wang X X 2016 Phys. Plasmas 23 093509
[16] Fu Y Y, Verboncoeur J P, Christlieb A J and Wang X X 2017 Phys. Plasmas 24 83516
[17] Ferreira C M, Alves L L, Pinheiro M and Sá A B 1991 IEEE Trans. Plasma Sci. 19 229
[18] Hyman H A 1979 Phys. Rev. A 20 855
[19] Roberto M, Smith H B and Verboncoeur J P 2003 IEEE Trans. Plasma Sci. 31 1292
[20] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges & Materials Processing (Chichester: John Wiley and Sons) p. 800
[21] Fiala A, Pitchford L C and Boeuf J P 1994 Phys. Rev. E 49 5607
[22] Yamabe C, Buckman S J and Phelps A V 1983 Phys. Rev. A 27 1345
[23] Liu S B, Mo J J and Yuan N C 2002 Int. J. Infrared Millimeter Waves 23 1803
[24] Kim H C and Verboncoeur J P 2007 Comput. Phys. Commun. 177 118
[25] Fu Y Y, Parsey G M, Verboncoeur J P and Christlieb A J 2017 Phys. Plasmas 24 113518
[26] Fu Y Y, Luo H Y, Zou X B and Wang X X 2014 Plasma Sources Sci. Technol. 23 065035
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[3] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[4] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[5] Synthesis of ZnO films with a special texture and enhanced field emission properties
Wang Xiao-Ping(王小平), Wang Zi(王子), Wang Li-Jun(王丽军), and Mei Cui-Yu(梅翠玉) . Chin. Phys. B, 2011, 20(10): 105203.
[6] Electroluminescence of double-doped diamond thin films
Zhang Shi(章诗), Wang Xiao-Ping(王小平), Wang Li-Jun(王丽军), Zhu Yu-Zhuan(朱玉传), Mei Cui-Yu(梅翠玉), Liu Xin-Xin(刘欣欣), Li Huai-Hui(李怀辉), and Gu Ying-Zhan(顾应展). Chin. Phys. B, 2010, 19(9): 097805.
[7] SiC epitaxial layers grown by chemical vapour deposition and the fabrication of Schottky barrier diodes
Wang Yue-Hu(王悦湖), Zhang Yi-Men(张义门), Zhang Yu-Ming(张玉明), Zhang Lin(张林), Jia Ren-Xu(贾仁需), and Chen Da(陈达). Chin. Phys. B, 2010, 19(3): 036803.
[8] Enhanced field emission characteristics of thin-Au-coated nano-sheet carbon films
Gu Guang-Rui(顾广瑞) and Ito Toshimichi(伊藤利道). Chin. Phys. B, 2009, 18(10): 4547-4551.
[9] Field emission characteristics of nano-sheet carbon films deposited by quartz-tube microwave plasma chemical vapour deposition
Gu Guang-Rui(顾广瑞), Jin Zhe(金哲), and Ito Toshimichi . Chin. Phys. B, 2008, 17(4): 1467-1471.
[10] Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition
Gu Guang-Rui(顾广瑞), Wu Bao-Jia(吴宝嘉), Jin Zhe(金哲), and Ito Toshimichi . Chin. Phys. B, 2008, 17(2): 716-720.
[11] Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition
Yang Wu-Bao (杨武保), Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Fan Song-Hua (范松华), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2003, 12(11): 1257-1260.
[12] CRYSTALLINE CARBON NITRIDE THIN FILMS DEPOSITED BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION
Zhang Yong-ping (张永平), Gu You-song (顾有松), Chang Xiang-rong (常香荣), Tian Zhong-zhuo (田中卓), Shi Dong-xia (时东霞), Zhang Xiu-fang (张秀芳), Yuan Lei (袁磊). Chin. Phys. B, 2000, 9(7): 545-549.
No Suggested Reading articles found!