Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067203    DOI: 10.1088/1674-1056/27/6/067203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction

Lin Zhang(张林)1,2
1 Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China;
2 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  We propose two possible spin valves based on a zigzag silicene nanoribbon (ZSR) ferromagnetic junction. By using the Landauer-Bütikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin-orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene.
Keywords:  zigzag silicene nanoribbon      spin valve      spin-orbit coupling      conductance  
Received:  25 February 2018      Revised:  25 March 2018      Published:  05 June 2018
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  72.25.Mk (Spin transport through interfaces)  
  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11547127),the China Postdoctoral Science Foundation (Grant No.2017M611852),and the Natural Science Foundation for Colleges and Universities in Jiangsu Province,China (Grant No.13KJB140005).
Corresponding Authors:  Lin Zhang     E-mail:  lzhang2010@163.com

Cite this article: 

Lin Zhang(张林) Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction 2018 Chin. Phys. B 27 067203

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[4] Moldovan D, Masir M R, Covaci L, Peeters F M 2012 Phys. Rev. B 86 115431
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[6] Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Guntherodt G, Beschotem B and Ozyilmaz B 2011 Phys. Rev. Lett. 107 047206
[7] Hwang E H, Adam S and Das Sarma S 2007 Phys. Rev. Lett. 98 186806
[8] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[9] Raes B, Scheerder J E, Costache M V, Bonell F, Sierra J F, Cuppens J, Van de Vondel J and Valenzuela S O 2016 Nat. Commun. 7 11444
[10] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[11] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[12] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
[13] Niu Z P and Xing D Y 2010 Eur. Phys. J. B 73 139
[14] Chen J, Cheng S, Shen S Q and Sun Q 2010 J. Phys.:Condens. Matter 22 035301
[15] Wang J, Tian H Y, Yang Y H and Chan K S 2012 Phys. Rev. B 86 081404
[16] Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
[17] Zhang L 2017 J. Phys.:Condens. Matter 29 055304
[18] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[19] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[20] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[21] Zhou B, Zhou B, Chen X W, Liao W and Zhou G 2015 J. Phys.:Condens. Matter 27 465301
[22] Zhai X and Jin G J 2016 J. Phys.:Condens. Matter 28 355002
[23] Shen M, Zhang Y Y, An X T, Liu J J and Li S S 2014 J. Appl. Phys. 115 233702
[24] Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Yang C H 2014 Rsc Adv. 4 58941
[25] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[26] Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
[27] Drummond N D, Zolyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[28] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[29] Ezawa M 2012 New J. Phys. 14 033003
[30] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 213115
[31] Wang S K, Wang J and Chan K S 2014 New J. Phys. 16 045015
[32] Farokhnezhad M, Esmaeilzadeh M, Ahmadi S and Pourmaghavi N 2015 J. Appl. Phys. 117 173913
[33] Rashidian Z, Hajati H, Rezaeipour S and Baher S 2017 Physica E 86 111
[34] Chowdhury S and Jana D 2016 Rep. Prog. Phys. 79 126501
[35] Majumdar A, Chowdhury S, Nath P and Jana D 2014 Rsc Adv. 4 32221
[36] Das R, Chowdhury S, Majumdar A and Jana D 2015 Rsc Adv. 5 41
[37] Chuang F C, Hsu C H, Chou H L, Crisostomo C P, Huang Z Q, Wu S Y, Kuo C C, Yeh W C V, Lin H and Bansil A 2016 Phys. Rev. B 93 035429
[38] Entin-Wohlman O, Aharony A and Levinson Y 2002 Phys. Rev. B 65 195411
[39] Datta S 1995 Electronic Transport in Mesoscopic systems, 2nd edn. (England:Cambridge University Press) pp. 102-103
[40] Lee M H 2000 Phys. Rev. Lett. 85 2422
[41] Datta S 2000 Superlattices Microstruct. 28 253
[42] Pecchia A, Penazzi G, Salvucci L and Di Carlo A 2008 New J. Phys. 10 065022
[43] Haug H and Jauho A P 1999 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin:Springer) pp. 162-163
[44] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[45] Thorgilsson G, Viktorsson G and Erlingsson S I 2014 J. Comput. Phys. 261 256
[46] Rotter S, Tang J Z, Wirtz L, Trost J and Burgdorfer J 2000 Phys. Rev. B 62 1950
[1] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[6] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[7] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[8] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[9] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[10] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[11] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[12] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[13] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[14] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[15] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
No Suggested Reading articles found!