Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100308    DOI: 10.1088/1674-1056/27/10/100308
GENERAL Prev   Next  

Coherent attacks on a practical quantum oblivious transfer protocol

Guang-Ping He(何广平)
School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

In a recent quantum oblivious transfer protocol proposed by Nagy et al., it was proven that attacks based on individual measurements and 2-qubit entanglement can all be defeated. Later we found that 5-body entanglement-based attacks can break the protocol. Here we further tighten the security bound, by showing that the protocol is insecure against 4-body entanglement-based attacks, while being immune to 3-body entanglement-based attacks. Also, increasing the number of qubits in the protocol is useless for improving its security.

Keywords:  quantum cryptography      quantum algorithm      quantum oblivious transfer      entanglement  
Received:  27 April 2018      Revised:  19 July 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Guang-Ping He     E-mail:  hegp@mail.sysu.edu.cn

Cite this article: 

Guang-Ping He(何广平) Coherent attacks on a practical quantum oblivious transfer protocol 2018 Chin. Phys. B 27 100308

[1] Bennett C H and Brassard G 1984 in Proceedings of IEEE Int. Conf. Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York) p. 175
[2] Rabin M O 1981 technical report TR-81 (Aiken Computation Laboratory, Harvard University) Available online at http://eprint.iacr.org/2005/187.pdf
[3] Even S, Goldreich O and Lempel A 1982 Advances in Cryptology:Proc. Crypto '82 (Plenum) p. 205
[4] Kilian J 1988 Proc. 1988 ACM Annual Symposium on Theory of Computing (ACM, New York) p. 20
[5] Colbeck R 2007 Phys. Rev. A 76 062308
[6] Salvail L, Schaffner C and Sotakova M 2008 arXiv:0902.4036
[7] Salvail L and Sotakova M 2009 arXiv:0906.1671
[8] Colbeck R 2009 arXiv:0911.3814
[9] Chailloux A, Kerenidis I and Sikora J 2013 Quantum Inform. Comput. 13 158
[10] He G P 2011 J. Phys. A:Math. Theor. 44 445305
[11] He G P 2015 Phys. Rev. A 92 046301
[12] He G P 2018 J. Phys. A:Math. Theor. 51 155301
[13] Wehner S, Schaffner C and Terhal B 2008 Phys. Rev. Lett. 100 220502
[14] Schaffner C 2010 Phys. Rev. A 82 032308
[15] Wei C Y, Cai X Q, Liu B, Wang T Y and Gao F 2018 IEEE Trans. Comput. 67 2
[16] Guo X Q, Luo C L and Yan Y 2013 J. Theor. Appl. Inform. Technol. 47 277
[17] Erven C, Ng N, Gigov N, Laflamme R, Wehner S and Weihs G 2014 Nat. Commun. 5 3418
[18] Li Y B, Wen Q Y, Qin S J, Guo F Z and Sun Y 2014 Quantum Inform. Process. 13 131
[19] Yang Y G, Xu P, Tian J and Zhang H 2014 Optik 125 5409
[20] Yang Y G, Sun S and Wang Y 2014 Int. J. Theor. Phys. 54 910
[21] He G P 2015 Quantum Inform. Process. 14 2153
[22] Yang Y G, Yang R, Lei H, Shi W M and Zhou Y H 2015 Quantum Inform. Process. 14 3031
[23] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3206
[24] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3838
[25] Pitalúa-García D 2016 Phys. Rev. A 93 062346
[26] Plesch M, Pawłowski M and Pivoluska M 2017 Phys. Rev. A 95 042324
[27] Yang Y G, Yang R, Cao W F, Chen X B, Zhou Y H and Shi W M 2017 Int. J. Theor. Phys. 56 1286
[28] Furrer F, Gehring T, Schaffner C, Pacher C, Schnabel R and Wehner S 2018 Nat. Commun. 9 1450
[29] Cheng X G, Guo R and Chen Y H 2018 Int. J. Quantum Inform. 16 1850039
[30] Nagy M and Nagy N 2016 Quantum Inform. Process. 15 5037
[31] He G P 2017 Quantum Inform. Process. 16 96
[32] Herzog U and Bergou J A 2005 Phys. Rev. A 71 050301
[1] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[5] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[8] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[9] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[10] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!