Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100308    DOI: 10.1088/1674-1056/27/10/100308
GENERAL Prev   Next  

Coherent attacks on a practical quantum oblivious transfer protocol

Guang-Ping He(何广平)
School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

In a recent quantum oblivious transfer protocol proposed by Nagy et al., it was proven that attacks based on individual measurements and 2-qubit entanglement can all be defeated. Later we found that 5-body entanglement-based attacks can break the protocol. Here we further tighten the security bound, by showing that the protocol is insecure against 4-body entanglement-based attacks, while being immune to 3-body entanglement-based attacks. Also, increasing the number of qubits in the protocol is useless for improving its security.

Keywords:  quantum cryptography      quantum algorithm      quantum oblivious transfer      entanglement  
Received:  27 April 2018      Revised:  19 July 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Guang-Ping He     E-mail:  hegp@mail.sysu.edu.cn

Cite this article: 

Guang-Ping He(何广平) Coherent attacks on a practical quantum oblivious transfer protocol 2018 Chin. Phys. B 27 100308

[1] Bennett C H and Brassard G 1984 in Proceedings of IEEE Int. Conf. Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York) p. 175
[2] Rabin M O 1981 technical report TR-81 (Aiken Computation Laboratory, Harvard University) Available online at http://eprint.iacr.org/2005/187.pdf
[3] Even S, Goldreich O and Lempel A 1982 Advances in Cryptology:Proc. Crypto '82 (Plenum) p. 205
[4] Kilian J 1988 Proc. 1988 ACM Annual Symposium on Theory of Computing (ACM, New York) p. 20
[5] Colbeck R 2007 Phys. Rev. A 76 062308
[6] Salvail L, Schaffner C and Sotakova M 2008 arXiv:0902.4036
[7] Salvail L and Sotakova M 2009 arXiv:0906.1671
[8] Colbeck R 2009 arXiv:0911.3814
[9] Chailloux A, Kerenidis I and Sikora J 2013 Quantum Inform. Comput. 13 158
[10] He G P 2011 J. Phys. A:Math. Theor. 44 445305
[11] He G P 2015 Phys. Rev. A 92 046301
[12] He G P 2018 J. Phys. A:Math. Theor. 51 155301
[13] Wehner S, Schaffner C and Terhal B 2008 Phys. Rev. Lett. 100 220502
[14] Schaffner C 2010 Phys. Rev. A 82 032308
[15] Wei C Y, Cai X Q, Liu B, Wang T Y and Gao F 2018 IEEE Trans. Comput. 67 2
[16] Guo X Q, Luo C L and Yan Y 2013 J. Theor. Appl. Inform. Technol. 47 277
[17] Erven C, Ng N, Gigov N, Laflamme R, Wehner S and Weihs G 2014 Nat. Commun. 5 3418
[18] Li Y B, Wen Q Y, Qin S J, Guo F Z and Sun Y 2014 Quantum Inform. Process. 13 131
[19] Yang Y G, Xu P, Tian J and Zhang H 2014 Optik 125 5409
[20] Yang Y G, Sun S and Wang Y 2014 Int. J. Theor. Phys. 54 910
[21] He G P 2015 Quantum Inform. Process. 14 2153
[22] Yang Y G, Yang R, Lei H, Shi W M and Zhou Y H 2015 Quantum Inform. Process. 14 3031
[23] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3206
[24] Yang Y G, Sun S J, Pan Q X and Xu P 2015 Optik 126 3838
[25] Pitalúa-García D 2016 Phys. Rev. A 93 062346
[26] Plesch M, Pawłowski M and Pivoluska M 2017 Phys. Rev. A 95 042324
[27] Yang Y G, Yang R, Cao W F, Chen X B, Zhou Y H and Shi W M 2017 Int. J. Theor. Phys. 56 1286
[28] Furrer F, Gehring T, Schaffner C, Pacher C, Schnabel R and Wehner S 2018 Nat. Commun. 9 1450
[29] Cheng X G, Guo R and Chen Y H 2018 Int. J. Quantum Inform. 16 1850039
[30] Nagy M and Nagy N 2016 Quantum Inform. Process. 15 5037
[31] He G P 2017 Quantum Inform. Process. 16 96
[32] Herzog U and Bergou J A 2005 Phys. Rev. A 71 050301
[1] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[4] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[5] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[6] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[7] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[8] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[9] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[12] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[13] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
No Suggested Reading articles found!