Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 056102    DOI: 10.1088/1674-1056/26/5/056102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure

Yang-Mei Chen(陈杨梅)1,2, Hua-Yun Geng(耿华运)2, Xiao-Zhen Yan(颜小珍)3, Zi-Wei Wang(王紫薇)2, Xiang-Rong Chen(陈向荣)1, Qiang Wu(吴强)2
1 Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  

The application of high pressure can fundamentally modify the crystalline and electronic structures of elements as well as their chemical reactivity, which could lead to the formation of novel materials. Here, we explore the reactivity of lithium with sodium under high pressure, using a swarm structure searching techniques combined with first-principles calculations, which identify a thermodynamically stable Li-Na compound adopting an orthorhombic oP8 phase at pressure above 355 GPa. The formation of Li-Na may be a consequence of strong concentration of electrons transfering from the lithium and the sodium atoms into the interstitial sites, which also leads to open a relatively wide band gap for LiNa-oP8. This is substantially different from atoms sharing or exchanging electrons in common compounds and alloys. In addition, lattice-dynamic calculations indicate that LiNa-oP8 remains dynamically stable when pressure decompresses down to 70 GPa.

Keywords:  high pressure      structure prediction      alkali metals     
Received:  10 January 2017      Published:  05 May 2017
PACS:  61.50.Nw (Crystal stoichiometry)  
  62.50.-p (High-pressure effects in solids and liquids)  
  82.33.Pt (Solid state chemistry)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11672274, 11274281, and 11174214), the China Academy of Engineering Physics Research Projects (Grant Nos. 2012A0101001 and 2015B0101005), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. U1430117), and the Fund of National Key Laboratory of Shock Wave and Detonation Physics of China (Grant No. 6142A03010101).

Corresponding Authors:  Hua-Yun Geng, Xiang-Rong Chen, Qiang Wu     E-mail:  s102genghy@caep.cn;xrchen@scu.edu.cn;wuqianglsd@163.com

Cite this article: 

Yang-Mei Chen(陈杨梅), Hua-Yun Geng(耿华运), Xiao-Zhen Yan(颜小珍), Zi-Wei Wang(王紫薇), Xiang-Rong Chen(陈向荣), Qiang Wu(吴强) Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure 2017 Chin. Phys. B 26 056102

[1] Chi T 1979 J. Phys. Chem. Ref. Data 8 339
[2] McMahon M I and Nelmes R J 2006 Chem. Soc. Rev. 35 943
[3] Wigner E and Seitz F 1933 Phys. Rev. 43 804
[4] Wigner E and Seitz F 1934 Phys. Rev. 46 509
[5] Fabbris G, Lim J, Veiga L, Haskel D and Schilling J 2015 Phys. Rev. B 91 085111
[6] Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501
[7] Guillaume C L, Gregoryanz E, Degtyareva O, McMahon M I, Hanfland M, Evans S, Guthrie M, Sinogeikin S V and Mao H 2011 Nat. Phys. 7 211
[8] Feng Y, Chen J, Alfé D, Li X Z and Wang E 2015 J. Chem. Phys. 142 064506
[9] Xie Y, John S T, Cui T, Oganov A R, He Z, Ma Y and Zou G 2007 Phys. Rev. B 75 064102
[10] Xie Y, Ma Y, Cui T, Li Y, Qiu J and Zou G 2008 New J. Phys. 10 063022
[11] Schaeffer A M, Temple S R, Bishop J K and Deemyad S 2015 Proc. Natl. Acad. Sci. 112 60
[12] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597
[13] Struzhkin V V, Eremets M I, Gan W, Mao H K and Hemley R J 2002 Science 298 1213
[14] Deemyad S and Schilling J S 2003 Phys. Rev. Lett. 91 167001
[15] Lv J, Wang Y, Zhu L and Ma Y 2011 Phys. Rev. Lett. 106 015503
[16] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[17] Matsuoka T and Shimizu K 2009 Nature 458 186
[18] Matsuoka T, Sakata M, Nakamoto Y, Takahama K, Ichimaru K, Mukai K, Ohta K, Hirao N, Ohishi Y and Shimizu K 2014 Phys. Rev. B 89 144103
[19] Marqués M, McMahon M, Gregoryanz E, Hanfland M, Guillaume C, Pickard C, Ackland G and Nelmes R 2011 Phys. Rev. Lett. 106 095502
[20] Shannon R T and Prewitt C T 1969 Acta Crystallogr. Sect. B -Struct. Sci. 25 925
[21] Zhang X and Zunger A 2010 Phys. Rev. Lett. 104 245501
[22] Desgreniers S, John S T, Matsuoka T, Ohishi Y and Justin J T 2015 Sci. Adv. 1 e1500669
[23] Botana J and Miao M S 2014 Nat. Commun. 5 4861
[24] Dong X, Oganov A R, Qian G, Zhou X F, Zhu Q and Wang H T 2015 arXiv: 1503.00230 [cond-mat.mtrl-sci]
[25] Bale C 1989 J. Phase Equilib. 10 262
[26] Bale C 1989 J. Phase Equilib. 10 268
[27] Bale C 1989 J. Phase Equilib. 10 232
[28] Bale C 1989 J. Phase Equilib. 10 265
[29] Canales M, González D, González L and Padró J 1998 Phys. Rev. E 58 4747
[30] Anento N, Casas J, Canales M, González D, González L and Padró J 1999 J. Non-Cryst. Solids 250 348
[31] González L, González D, Silbert M and Alonso J 1993 J. Phys.-Condens. Matter 5 4283
[32] Gonzalez D J, Gonzalez L E, Lopez J M and Stott M J 2004 Phys. Rev. E 69 031205
[33] Teweldeberhan A M and Bonev S A 2011 Phys. Rev. B 83 134120
[34] Tamblyn I, Raty J Y and Bonev S A 2008 Phys. Rev. Lett. 101 075703
[35] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[36] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[37] Yan X, Chen Y, Xiang S, Kuang X, Bi Y and Chen H 2016 Phys. Rev. B 93 214112
[38] Yan X, Chen Y, Kuang X and Xiang S 2015 J. Chem. Phys. 143 124310
[39] Zhang M, Yan H, Zhang G and Wang H 2012 Chin. Phys. B 21 076103
[40] Lv J, Zhang J, Liang R and Wu H 2016 Chin. Phys. B 25 063103
[41] Zhang G, Bai T, Zhao Y and Lu C 2013 Chin. Phys. B 22 116104
[42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Speight J G 2005 Lange's Handbook of Chemistry (New York: McGraw-Hill)
[46] Connerade J P 2003 Phys. Scripta 68 C25
[47] Maksimov E G, Magnitskaya M V and Fortov V E 2005 Phys.-Usp. 48 761
[48] Connerade J P 2013 J. Phys.: Conf. Ser. 438 012001
[49] Bader R F 1985 Accounts Chem. Res. 18 9
[50] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[51] Tang W, Sanville E and Henkelman G 2009 J. Phys. -Condens. Matter 21 084204
[52] Naumov I I and Hemley R J 2015 Phys. Rev. Lett. 114 156403
[53] Oganov A R, Ma Y, Xu Y, Errea I, Bergara A and Lyakhov A O 2010 Proc. Natl. Acad. Sci. 107 7646
[54] Pickard C J and Needs R J 2010 Nat. Mater. 9 624
[55] Li P, Gao G, Wang Y and Ma Y 2010 J. Phys. Chem. C 114 21745
[56] Shishkin M and Kresse G 2006 Phys. Rev. B 74 035101
[57] Fuchs F, Furthmüller J, Bechstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109
[58] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[59] Shishkin M, Marsman M and Kresse G 2007 Phys. Rev. Lett. 99 246403
[1] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[2] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[3] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[4] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Improving RNA secondary structure prediction using direct coupling analysis
Xiaoling He(何小玲), Jun Wang(王军), Jian Wang(王剑), Yi Xiao(肖奕). Chin. Phys. B, 2020, 29(7): 078702.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[9] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[12] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang(王骏), Jian Zhang(张建). Chin. Phys. B, 2020, 29(10): 108704.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影), Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[15] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
No Suggested Reading articles found!