Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118702    DOI: 10.1088/1674-1056/ac8ce3
RAPID COMMUNICATION Prev   Next  

RNAGCN: RNA tertiary structure assessment with a graph convolutional network

Chengwei Deng(邓成伟)1, Yunxin Tang(唐蕴芯)1, Jian Zhang(张建)1,2,†, Wenfei Li(李文飞)1,2, Jun Wang(王骏)1,2, and Wei Wang(王炜)1,2,‡
1 Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210008, China;
2 Institute for Brain Sciences, Nanjing University, Nanjing 210008, China
Abstract  RNAs play crucial and versatile roles in cellular biochemical reactions. Since experimental approaches of determining their three-dimensional (3D) structures are costly and less efficient, it is greatly advantageous to develop computational methods to predict RNA 3D structures. For these methods, designing a model or scoring function for structure quality assessment is an essential step but this step poses challenges. In this study, we designed and trained a deep learning model to tackle this problem. The model was based on a graph convolutional network (GCN) and named RNAGCN. The model provided a natural way of representing RNA structures, avoided complex algorithms to preserve atomic rotational equivalence, and was capable of extracting features automatically out of structural patterns. Testing results on two datasets convincingly demonstrated that RNAGCN performs similarly to or better than four leading scoring functions. Our approach provides an alternative way of RNA tertiary structure assessment and may facilitate RNA structure predictions. RNAGCN can be downloaded from https://gitee.com/dcw-RNAGCN/rnagcn.
Keywords:  RNA structure predictions      scoring function      graph convolutional network      deep learning      RNA-puzzles  
Received:  14 June 2022      Revised:  11 August 2022      Accepted manuscript online:  26 August 2022
PACS:  87.15.B- (Structure of biomolecules)  
  87.14.gn (RNA)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: This study was funded by the National Natural Science Foundation of China (Grant Nos. 11774158 to JZ, 11934008 to WW, and 11974173 to WFL). The authors acknowledge High Performance Computing Center of Advanced Microstructures, Nanjing University for the computational support.
Corresponding Authors:  Jian Zhang, Wei Wang     E-mail:  jzhang@nju.edu.cn;wangwei@nju.edu.cn

Cite this article: 

Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜) RNAGCN: RNA tertiary structure assessment with a graph convolutional network 2022 Chin. Phys. B 31 118702

[1] Krochmal D, Shao Y, Li N S, DasGupta S, Shelke S A, Koirala D and Piccirilli J A 2022 Nat. Chem. Biol. 18 376
[2] Oleksiak M F, Roach J L and Crawford D L 2005 Nat. Genet. 37 67
[3] Zhang Y, Wang J and Xiao Y 2020 Comput. Struct. Biotechnol. J. 18 2416
[4] Watkins A M, Rangan R and Das R 2020 Structure 28 963
[5] Krokhotin A, Houlihan K and Dokholyan N V 2015 Bioinformatics 31 2891
[6] Parisien M and Major F 2008 Nature 452 51
[7] Zhao C, Xu X, Chen S J, Kaufmann M, et al. 2017 Functional Genomics: Methods and Protocols (New York: Springer), pp. 3-15
[8] Boniecki M J, Lach G, Dawson W K, Tomala K, Lukasz P, Soltysinski T, Rother K M and Bujnicki J M 2016 Nucleic Acids Res. 44 e63
[9] Zhao Y, Huang Y, Gong Z, Wang Y, Man J and Xiao Y 2012 Sci. Rep. 2 734
[10] Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y and Xiao Y 2017 Nucleic Acids Research 45 6299
[11] Xu X and Chen S J 2021 Methods Mol. Biol 2323 1
[12] Zhang J, Zhang Y J and Wang W 2010 Chin. Phys. Lett. 27 118702
[13] Zhang D, Li J and Chen S J 2021 Journal of Chemical Theory and Computation 17 1842
[14] Xu X and Chen S J 2016 PloS One 11 e0163454
[15] Tan Z J and Chen S J 2010 Biophysical Journal 99 1565
[16] Gong S, Liu T G, Wang Y L and Zhang W B 2020 Chin. Phys. B 29 108703
[17] Shi Y Z, Wu Y Y, Wang F H and Tan Z J 2014 Chin. Phys. B 23 78701
[18] Wang W B, Li X Y and Su J G 2022 Chin. Phys. B 31 68704
[19] He X L, Wang J, Wang J and Xiao Y 2020 Chin. Phys. B 29 78702
[20] Tan Y L, Feng C J, Wang X X, Zhang W B and Tan Z J 2021 Chin. Phys. B 30 28705
[21] Yang Y, Gu Q, Zhang B G, Shi Y Z and Shao Z G 2018 Chin. Phys. B 27 38701
[22] Alford R F, Leaver-Fay A, Jeliazkov J R, et al. 2017 Journal of Chemical Theory and Computation 13 3031
[23] Wang J, Zhao Y, Zhu C and Xiao Y 2015 Nucleic Acids Res. 43 e63
[24] Capriotti E, Norambuena T, Marti-Renom M A and Melo F 2011 Bioinformatics 27 1086
[25] Bernauer J, Huang X, Sim A Y and Levitt M 2011 RNA 17 1066
[26] Zhang T, Hu G, Yang Y, Wang J and Zhou Y 2020 J. Comput. Biol 27 856
[27] Tan Y L, Wang X, Shi Y Z, Zhang W and Tan Z J 2022 Biophys. J. 121 142
[28] Devlin J, Chang M W, Lee K and Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171-4186
[29] Brown T B, Mann B, Ryder N, et al. 2020 Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, Article 159
[30] Arumugam K, Naved M, Shinde P, Leiva-Chauca O, Huaman-Osorio A and Gonzales-Yanac T 2021 Materials Today: Proceedings
[31] Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583
[32] Eismann S, Townshend R J L, Thomas N, Jagota M, Jing B and Dror R O 2021 Proteins 89 493
[33] Pei B and Hsu Y H 2020 Immunogenetics 72 295
[34] Huang B, Du Y Y, Zhang S, Li W F, Wang J and Zhang J 2020 Chin. Phys. B 29 108704
[35] Li J, Zhu W, Wang J, Li W, Gong S, Zhang J and Wang W 2018 PLoS Comput. Biol. 14 e1006514
[36] Min C, Xu J, Xiao L, Zhao D, Nie Y and Dai B 2021 IEEE Robotics and Automation Letters 6 3445
[37] Wu Z, Pan S, Chen F, Long G, Zhang C and Yu P S 2021 IEEE Trans. Neural Netw. Learn. Syst. 32 4
[38] Li G, Muller M, Thabet A and Ghanem B 2019 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9266-9275
[39] Zhang C, Song D, Huang C, Swami A and Chawla N V 2019 Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793-803
[40] Li G, Müler M, Ghanem B and Koltun V 2021 Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, pp. 6437-6449
[41] Li X and Cheng Y 2021 Neural Netw. 140 130
[42] Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H and Wang H 2022 Nature Machine Intelligence 4 127
[43] Fout A, Byrd J, Shariat B and Ben-Hur A 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, pp. 6533-6542
[44] Baldassarre F, Menendez Hurtado D, Elofsson A and Azizpour H 2021 Bioinformatics 37 360
[45] Sanyal S, Anishchenko I, Dagar A, Baker D and Talukdar P 2020 bioRxiv:0406.028266v1
[46] Quan Z, Guo Y, Lin X, Wang Z J and Zeng X 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 18-21 Nov. 2019, pp. 717-722
[47] Huang Y A, Huang Z A, You Z H, Zhu Z, Huang W Z, Guo J X and Yu C Q 2019 Front Genet 10 758
[48] Leontis N B, Zirbel C L (Leontis N, Westhof E ed) 2012 RNA 3D Structure Analysis and Prediction (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 281-298
[49] Nawrocki E P and Eddy S R 2013 Bioinformatics 29 2933
[50] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Software X 1-2 19
[51] Miao Z, Adamiak R W, Antczak M, et al. 2020 RNA 26 982
[52] Tan Y L, Feng C J, Jin L, Shi Y Z, Zhang W and Tan Z J 2019 RNA 25 793
[53] Zwieb C, Nakao Y, Nakashima T, Takagi H, Goda S, Andersen E S, Kakuta Y and Kimura M 2011 Biochem Biophys Res. Commun. 414 517
[54] Townshend R, Eismann S, Watkins A, Rangan R, Karelina M, Das R and Dror R 2021 Science 373 1047
[55] Xiong G, Xi K, Zhang X and Tan Z J 2018 Chin. Phys. B 27 18203
[56] Bao L, Zhang X, Lei J and Tan Z J 2016 Chin. Phys. B 25 18703
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[7] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[8] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[13] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[14] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
No Suggested Reading articles found!