Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027801    DOI: 10.1088/1674-1056/26/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition

Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  High indium semipolar (1122) and polar (0001) InGaN layers each with a thickness of about 100 nm are realized simultaneously on sapphire substrates by pulsed metal organic chemical vapor deposition (MOCVD). The morphology evolution, structural and optical characteristics are also studied. The indium content in the layer of the surface (1122) is larger than that of the surface (0001), which is confirmed by reciprocal space map, photoluminescence spectrum and secondary ion mass spectrometer. Additionally, the (0001) surface with island-like morphology shows inhomogeneous indium incorporation, while the (1122) surface with a spiral-like morphology shows a better homogeneous In composition. This feature is also demonstrated by the monochromatic cathodoluminescence map.
Keywords:  semipolar      GaN      MOCVD  
Received:  29 September 2016      Revised:  08 November 2016      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204006 and 61574108) and the Fundamental Research Funds for the Central Universities, China (Grant No. 7214570101).
Corresponding Authors:  Sheng-Rui Xu, Jin-Cheng Zhang     E-mail:  shengruixidian@126.com;jchzhang@xidian.edu.cn

Cite this article: 

Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition 2017 Chin. Phys. B 26 027801

[1] Wei T B, Hu Q, Duan R F, Wei X C, Huo Z Q, Wang J X, Zeng Y P, Wang G H and Li J M 2009 J. Cryst. Growth 311 4153
[2] Xu S R, Hao Y, Zhang J C, Xue X Y, Li P X, Li J T, Lin Z Y, Liu Z Y, Ma J C, He Q and Lv L 2011 Chin. Phys. B 20 107802
[3] Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
[4] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865
[5] Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L and Lin Z Y 2013 Nano Lett. 13 365
[6] Okamoto K, Kashiwagi J, Tanaka T and Kubota M 2009 Appl. Phys. Lett. 94 071105
[7] Enya Y, Yoshizumi Y, Kyono T, Akita K, Ueno M, Adachi M, Sumitomo T, Tokuyama S, Ikegami T, Katayama K and Nakamura T 2009 Appl. Phys. Express 2 082101
[8] Kyono T, Yoshizumi Y, Enya Y, Adachi M, Tokuyama S, Ueno M, Katayama K and Nakamura T 2010 Appl. Phys. Express 3 011003
[9] Yamamoto S, Zhao Y, Pan C C, Chung R B, Fujito K, Sonoda J, Denbaars S P and Nakamura S 2010 Appl. Phys. Express 3 122102
[10] Zhao Y, Tanaka T, Yan Q, Huang C Y, Chung R B, Pan C C, Fujito K, Feezell D, Walle C G V, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Lett. 99 051109
[11] Zhao Y, Tanaka S, Pan C C, Fujito K, Feezell D, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Express 4 082104
[12] Funato M, Ueda M, Kawakami Y, Narukawa Y, Kosugi T, Takahashi M and Mukai T 2006 Jpn. J. Appl. Phys. 45 L659
[13] Xu S R, Zhao Y, Jiang T, Zhang J C, Li P X and Hao Y 2016 Chin. Phys. Lett. 33 068102
[14] Lee S N, Kim K K, Nam O H, Kim J H and Kim H 2010 Phys. Status Solidi B 7 2043
[15] Oh D S, Jong J J, Nam O, Song K M and Lee S M 2011 J. Cryst. Growth 326 33
[16] Benjamin L, Wang D, Sheng K Y and Han J 2015 Phys. Status Solidi B 9 13
[17] Zhang Y C, Zhou X W, Xu S R, Zhang J F, Zhang J C and HaoY 2016 Appl. Phys. Express 9 061003
[18] Zhang Y C, Zhou X W, Xu S R, Wang Z Z, Zhao Y, Zhang J F, Chen D Z, Zhang J C and HaoY 2015 Appl. Phys. Lett. 106 152101
[19] Ploch S, Wernicke T, Dinh D V, Pristovsek M and Kneissl M 2012 J. Appl. Phys. 111 033526
[20] Neugebauer J 2001 Phys. Status Solidi B 227 93
[21] Vickers M E, Kappers M J, Datta R, Mcaleese C, Smeeton T M and Rayment F D G 2005 J. Phys. D: Appl. Phys. 38 99
[22] Romanov A E, Young E C, Wu F, Anurag T, Gallinat C S, Nakamura S, DenBaars S P and Speck J S 2012 J. Appl. Phys. 109 103522
[23] Schuster M, Gervais P O, Jobst B, Hösler W, Averbeck R, Riechert H, Iberl A and Stömmer R 1999 J. Phys. D: Appl. Phys. 32 56
[24] Pereira S, Correia M R, Pereira E, O'Donnell K P, Martin R W, White M E, Alves E, Sequeira A D and Franco N 2002 Mater. Sci. Eng. B 93 163
[25] Bhat R and Guryanov G M 2015 J. Cryst. Growth 433 7
[26] Selke H, Amirsawadkouhi M, Ryder P L, Böttcher T, Einfeldt S, Hommel D and Bertram F 1999 J. Christen. Mater. Sci. Eng. B 59 279
[27] Damilano B and Gil B 2015 J. Phys. D: Appl. Phys. 48 403001
[28] D O Demchenko, I C Diallo and M A Reshchikov 2016 J. Appl. Phys. 119 035702
[29] Northrup J E 2009 Appl. Phys. Lett. 95 133107
[30] Yayama T, Kangawa Y, Kakimoto K and Koukitu A 2013 Jpn. J. Appl. Phys. 45 08JC02
[31] Durnev M V, Omelchenko A V, Yakovlev E V, Evstratov I Y and Karpov S Y 2011 Phys. Status Solidi A 208 2671
[32] Dinh D V, Pristovsek M and Kneissl M 2015 Phys. Status Solidi B 8 1
[33] Dinh D V, Oehler F, Zubialevich V Z, Kappers M J, Alam S N, Caliebe M, Scholtz F, Humphreys C J and Parbrook P J 2014 J. Appl. Phys. 116 153505
[34] Wernicke T, Schade L, Netzel C, Rass J, Hoffmann V, Ploch S, Knauer A, Weyers M, Schwarz U and Kneissl M 2012 Semicond. Sci. Technol. 27 024014
[35] Browne D A, Young E C, Lang J R, Hurni1C A and Speck J S 2012 J. Vac. Sci. Technol. A 30 041513
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[11] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[12] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[13] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
No Suggested Reading articles found!