Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027701    DOI: 10.1088/1674-1056/26/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition

Xue-Li Ma(马雪丽)1,3, Hong Yang(杨红)1,3, Jin-Juan Xiang(项金娟)1,3, Xiao-Lei Wang(王晓磊)1,3, Wen-Wu Wang(王文武)1,3, Jian-Qi Zhang(张建齐)2, Hua-Xiang Yin(殷华湘)1,3, Hui-Long Zhu(朱慧珑)1,3, Chao Zhao(赵 超)1,3
1 Integrated Circuit Advanced Process R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this work, ultrathin pure HfO2 and Al-doped HfO2 films (about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO2 and Al-doped HfO2 films are both amorphous. After 550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO2 film while the Al-doped HfO2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.

Keywords:  Al-doped HfO2 ultrathin film      phase transition      thermodynamics      kinetics  
Received:  14 October 2016      Revised:  22 November 2016      Accepted manuscript online: 
PACS:  77.55.D-  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  82.60.Nh (Thermodynamics of nucleation)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016501) and the National Natural Science Foundation of China (Grant Nos. 61574168 and 61504163).

Corresponding Authors:  Wen-Wu Wang     E-mail:  wangwenwu@ime.ac.cn

Cite this article: 

Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超) Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition 2017 Chin. Phys. B 26 027701

[1] Chen Y H, Chen C Y, Cho C L, Hsieh C H, Wu Y C, Chang-Liao K S and and Wu Y H 2015 Proceedings of IEDM Tech. Dig., December 7-9, 2015, Washington, D.C., USA, p. 576
[2] Wu C Y, Hsieh C H, Lee C W and Wu Y H 2015 Appl. Phys. Lett. 106 053508
[3] Cisneros-Morales M C and Aita C R 2011 Appl. Phys. Lett. 98 051909
[4] Fu C H, Chang-Liao K S, Li C C, Ye Z H, Hsu F M, Wang T K, Lee Y J and Tsai M J 2012 Appl. Phys. Lett. 101 032105
[5] Bethge O, Abermann S, Henkel C and Bertagnolli E 2009 Thin Solid Films 517 5543
[6] Choi J H, Mao Y and Chang J P 2011 Mater. Sci. Eng. R 72 97
[7] Robertson J 2008 J. Appl. Phys. 104 124111
[8] Zhao X Y and Vanderbilt D 2002 Phys. Rev. B 65 233106
[9] Tomida K, Kita K and Toriumi A 2006 Appl. Phys. Lett. 89 142902
[10] Kita K, Kyuno K and Toriumi A 2005 Appl. Phys. Lett. 86 102906
[11] Park T J, Kim J H, Jang J H, Lee C K, Na K D, Lee S Y, Jung H S, Kim M, Han S and Hwang C S 2010 Chem. Mater. 22 4175
[12] Park P K and Kang S W 2006 Appl. Phys. Lett. 89 192905
[13] Ragnarsson L A, Adelmann C, Higuchi Y, Opsomer K, Veloso A, Chew S A, Röhr E, Vecchio E, Shi X P, Devriendt K, Sebaai F, Kauerauf T, Pawlak M A, Schram T, Elshocht S V, Horiguchi N and Thean A 2012 Proceedings of VLSI Tech. Dig., June 12-15, 2012, Honolulu, USA, p. 27
[14] Adelmann C, Schram T, Chew S A, Woicik J C, Brizzi S, Tallarida M, Schmeisser D, Horiguchi N, Elshocht S V and Ragnarsson L A 2014 Appl. Phys. Lett. 104 122906
[15] Yang Y, Zhu W J, Ma T P and Stemmer S 2004 J. Appl. Phys. 95 3772
[16] Govindarajan S, Böscke T S, Sivasubramani P, Kirsch P D, Lee B H, Tseng H H, Jammy R, Schröder U, Ramanathan S and Gnade B E 2007 Appl. Phys. Lett. 91 062906
[17] Hackley J C, Gougousi T and Demaree J D 2007 J. Appl. Phys. 102 034101
[18] Kim H, Lee H B R and Maeng W J 2009 Thin Solid Films 517 2563
[19] Yu H Y, Li M F and Kwong D L 2004 Thin Solid Films 462-463 110
[20] Zhu W, Ma T P, Tamagawa T, Di Y, Kim J, Carruthers R, Gibson M and Furukawa T 2001 Proceedings of IEDM Tech. Dig., December 2-5, 2001, Washington, D.C., USA, p. 20.4.1
[21] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[22] STACY D W and WILDER D R 1975 J. Am. Ceram. Soc. 58 285
[23] Mittemeijer E J 2011 Fundamentals of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 371-380
[24] Gottstein G 2004 Physical Foundations of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 389-422
[25] Gutiérrez G and Johansson B 2002 Phys. Rev. B 65 104202
[26] Wang J and Li H P and Stevens R 1992 J. Mater. Sci. 27 5397
[27] Lee C K, Cho E, Lee H S, Hwang C S and Han S 2008 Phys. Rev. B 78 012102
[28] Saitoh M, Mizoguchi T, Tohei T and Ikuhara Y 2012 J. Appl. Phys. 112 084514
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[5] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[6] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[10] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[11] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[12] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[13] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[14] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[15] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
No Suggested Reading articles found!