Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027503    DOI: 10.1088/1674-1056/26/2/027503

Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach

Q Mahmood1, M Hassan1, M A Faridi2
1 Department of Physics, University of the Punjab, Quaid-e-Azam Campus-54590, Lahore, Pakistan;
2 Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan
Abstract  We present structural, magnetic and optical characteristics of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni and x=6.25%), calculated through Wien2k code, by using full potential linearized augmented plane wave (FP-LAPW) technique. The optimization of the crystal structures have been done to compare the ferromagnetic (FM) and antiferromagnetic (AFM) ground state energies, to elucidate the ferromagnetic phase stability, which further has been verified through the formation and cohesive energies. Moreover, the estimated Curie temperatures Tc have demonstrated above room temperature ferromagnetism (RTFM) in Zn1-xTMxTe (TM=Mn, Fe, Co, Ni and x=6.25%). The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors, while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe. The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities. The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model. The evaluated band gaps lie in near visible and ultraviolet regions, which make these materials suitable for various important device applications in optoelectronic and spintronic.
Keywords:  magnetic semiconductors      density functional theory      optical and dielectric properties      electron density of states and band structure of crystalline solids  
Received:  02 August 2016      Revised:  19 November 2016      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  51.70.+f (Optical and dielectric properties)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Corresponding Authors:  M Hassan     E-mail:

Cite this article: 

Q Mahmood, M Hassan, M A Faridi Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach 2017 Chin. Phys. B 26 027503

[1] Zhang W and Huang J 2016 Chin. Phys. B 25 057103
[2] En-Ge W and Wang M 2011 Adv. Search. Chin. J. Lab. Medicine 40 333
[3] Ai L Q, Zhang X X, Chen M and Xiong D X 2016 Acta Phys. Sin. 65 096501 (in Chinese)
[4] Hao C 2007 Adv. Search. Chin. J. Lab. Medicine 36 910
[5] Al-Khateeb, Alqadi M K, Alzoubi, Albiss B, Hasan M K and Ayoub N Y 2016 Chin. Phys. B 25 058402
[6] Zhang W W, Hu M, Liu X, Li N and Yan W J 2016 Acta Phys. Sin. 65 090701 (in Chinese)
[7] Xiong Y 2016 Chin. Phys. Lett. 33 057402
[8] Ru-Shan H 2010 Adv. Search. Chin. J. Lab. Medicine 39 753
[9] Zhang Y, Duan L, Ji V and Xu K W 2016 Chin. Phys. B 25 058102
[10] Xie Q Y, Zhai Z Y,, Chen G B, Wu X S and Gao J 2016 Chin. Phys. Lett. 33 56103
[11] Tamargo M C, Brasil M J S P, Nahory R E, Martin R J, Weaver A L and Gilchrist H L 1991 Semicond. Sci. Technol. 6 A8
[12] Su C H, Feth S, Volz M P, Matyi R, George M A, Chattopadhyay K, Burger A and Lehoczky S L 1999 J. Cryst. Growth 207 35
[13] Prinz G A, Jonker B T, Krebs J J, Ferrari J M and Kovanic F 1986 Appl. Phys. Lett. 48 1758
[14] Eryong N, Donglai L, Yusen Z, Xue B, Liang Y, Yong J, Zhifeng J and Xiasong S 2011 Appl. Surf. Sci. 257 8762
[15] Kim Y D, Cooper S L and Klein M V 1993 Appl. Phys. Lett. 62 2387
[16] Hellwege K H and Madelung O 1982 Numerical Data and Functional Relationships in Science and Technology (New York: Springer-Verlag)
[17] Ibrahim A, El-Sayed N, Kaid M and Ashour A 2004 Vacuum 75 189
[18] Haury A, Wasiela A, Arnoult A, Cibert J, Tatarenko S, Dietl T and Merle daubigne Y 1997 Phys. Rev. Lett. 79 511
[19] Ferrand D, Cibert J, Bourgognon C, Tatarenko S, Wasiela A, Fishman G, Bonanni A, Sitter H, Kolesnik S, Jaroszynski J, Barcz A and Dietl T 2000 J. Cryst. Growth 214/215 387
[20] Mahmood Q, Murtaza G, Ahmad R, Hussain T and Will I G 2016 Curr. Appl. Phys. 16 361
[21] Erlacher A, Ambrico M, Perna G, Schiavulli L, Ligonzo T, Jaeger H and Ullrich B 2005 Appl. Surf. Sci. 248 402
[22] Wang W, Ni C, Zhu T, Zhang H and Xiao J Q 2006 J. Appl. Phys. 99 08D503
[23] Hou X J, Teo K L, Sreenivasan M G, Liew T and Chong T C 2006 Thin Solid Films 505 126
[24] Tang F L, Su H L, Chuang P Y, Wu Y C, Huang J C A, Huang X L and Jin Y 2014 RSC Adv. 4 49308
[25] Mahmood A, Rashid R, Aziz U, Shah A, Ali Z, Raza Q and Ashraf T 2015 Prog. Nat. Sci.: Mater. Int. 25 22
[26] Eilers J, Groeneveld E, Donega C M and Meijerink A 2012 J. Phys. Chem. Lett. 3 1663
[27] Vaksman Y F, Nitsuk Y A, Pavlov V V, Purtov Y N, Nasibov A S and Shapkin P V 2007 Semiconductors 41 660
[28] Testelin C, Prost J B, Menant M, Zielinski M and Mycielski A 2000 Solid State Commun. 113 695
[29] Mahmood Q, Hassan M, Faridi M A, Sabir B, Murtaza G and Mahmood A 2016 Curr. Appl. Phys. 16 549
[30] Guo M, Gao G and Hu Y 2011 J. Magn. Magn. Mater. 323 122
[31] McNorton R D, Schuler T M and MacLaren J M 2008 Phys. Rev. B 78 075209
[32] Katsnelson M I, Yu-Irkhin V, Chioncel L, Lichtenstein A I and de Groot R 2008 Rev. Mod. Phys. 80 315
[33] Dowben P A and Skomski R 2004 J. Appl. Phys. 95 7453
[34] Sato K and Yoshida H K 2001 Hyperfine Interactions 136/137 737
[35] Ueda S, Sekiyama A, Iwasaki T, Imada S, Suga S, Saitoh Y, Giriat W and Takeyama S 2008 Phys. Rev. B 78 205206
[36] Benkhettou N and Bensaid D 2008 J. Conden. Matt. Phys. 29 290301
[37] Zaari H, Boujnah M, El Hachimi A, Benyoussef A and El Kenz A 2014 Opt. Quantum Electron. 46 75
[38] Wang Q, Sun Q and Jena P 2005 J. Appl. Phys. 97 043904
[39] Xia C J, Zhang B Q, Yang M, Wang C L and Yang A Y 2016 Chin. Phys. Lett. 33 47101
[40] Zhao Z Y, Wang H L and Li M 2016 Acta Phys. Sin. 65 097101 (in Chinese)
[41] Lee W C and Wu C 2016 Chin. Phys. Lett. 33 037201
[42] Wu H and Li F 2016 Acta Phys. Sin. 65 096801 (in Chinese)
[43] Zhu X H, Chen X R and Liu B 2016 Chin. Phys. B 25 057501
[44] Zhang H H, Li X D, Xie Y P, Hu L J and Yao M Y 2016 Acta Phys. Sin. 65 096802 (in Chinese)
[45] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 "WIEN2K: An Augmented-Plane-Wave+Local Orbitals Program for Calculating Crystal Properties", Karlheinz Schwarz, Techn. Wien, Austria
[46] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[47] Tran F and Blaha P Phys. 2009 Rev. Lett. 102 226401.
[48] Sato K and Yoshida H K 2001 J. Appl. Phys. 40 L651
[49] Tang F L, Su H L, Huang S Y, Wu Y C, Huang J C A, Du Y W, Huang X L and Jin Y 2014 J. Alloys Compd. 617 322
[50] Kepa H, Khoi L V, Brown C M, Dietl T, Furdyna J K and Giebultowicz T M 2004 Physica B 350 36
[51] Rao N M, Vijayalakshmi R P, Reddy D R and Reddy B K 2008 Spect. Acta Part. A 69 688
[52] Wei S H and Zunger A 1986 Phys. Rev. B 35 2340
[53] Harrison W A 1989 "Electronic Structure and the Properties of Solids, the Physics of the Chemical Band", Stanford University
[54] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
[55] Kootstra F, de Boeij P L and Snijders J C 2000 Phys. Rev. B 62 7071
[56] Zhang C W and Yan S 2010 J. Appl. Phys. 107 043913
[57] Fang W, Liu Y, Gou B, Peng L, Zhong Y, Zhang Z and Zhao Z 2014 J. Alloys Compd. 584 240
[58] Wang H 2016 Chin. Phys. Lett. 33 057802
[59] Tao X, Zhon-Yi L, Miao G and Xun-Wang Y 2011 Adv. Search. Chin. J. Lab. Medicine 40 584
[60] Wang J, Zhang P and Duan X M 2016 Chin. Phys. B 25 057301
[61] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[62] Wei S H and Zunger A 1987 Phys. Rev. B 5 2340
[63] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[64] Mahmood Q, Javed A, Murtaza G, Alay-e-Abbas S M 2015 Mater. Chem. Phys. 162 831
[65] Xie J 2010 J. Magn. Magn. Mater. 322 L37
[66] Gaj G A, Planel R and Fishman G 1979 Solid State Commun. 29 435
[67] Sanvito S, Ordejon P and Hill N A 2001 Phys. Rev. B 63 165206
[68] Dalpian G M and Wei S H 2006 Phys. Rev. B 73 245204
[69] Marius G 2010 Kramers-Kronig relations (The Physics of Semiconductors) (Berlin, Heidelberg: Springer)
[70] Penn D 1962 Phys. Rev. B 128 2093
[71] Benstaalia W, Bentata S, Abbad A and Belaidi A 2013 Mater. Sci. Semicond. Proc. 16 231
[72] Jeetendra S, Nagabhushana H, Mrudula K, Naveen C S, Raghu P and Mahesh H M 2014 J. Electro-Chem. Sci. 9 2944
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!