Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源)1, Ming Zhong(钟鸣)1, and Peiqing Tong(童培庆)1,2,†
1 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China; 2 Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract We study the dynamical quantum phase transitions (DQPTs) in the chains with the Dzyaloshinskii-Moriya interaction and the - type of three-site interaction after a sudden quench. Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form ǎ, where the quasiparticle excitation spectra ǎ may be smaller than 0 for some and are asymmetrical (ǎǎ). It is found that the factors of Loschmidt echo equal 1 for some corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfying ǎǎ, when the quench is from the gapless phase. By considering the quench from different ground states, we obtain the conditions for the occurrence of DQPTs for the general chains with gapless phase, and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase. This is different from the DQPTs in the case of quench from the gapped phase to gapped phase, in which the DQPTs will always appear. Moreover, we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase. The conclusion can also be extended to the general quantum spin chains.
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆) Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions 2022 Chin. Phys. B 31 060505
[1] Vojta T 2002 Quantum Phase Transitions in Computational Statistical Physics (Berlin: Springer) p. 211 [2] Sachdev S 2000 Quantum Phase Transitions (Cambridge: Cambridge University Press) [3] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett.110 135704 [4] Karrasch C and Schuricht D 2013 Phys. Rev. B87 195104 [5] Hickey J M, Genway S and Garrahan J P 2017 Phys. Rev. B89 054301 [6] Vajna S and Dora B 2014 Phys. Rev. B89 161105 [7] Heyl M 2015 Phys. Rev. Lett.115 140502 [8] Vajna S and Dora B 2015 Phys. Rev. B91 155127 [9] Budich J C and Heyl M 2016 Phys. Rev. B93 085416 [10] Huang Z and Balatsky A V 2016 Phys. Rev. Lett.117 086416 [11] Zvyagin A A 2016 Low Temp. Phys.42 971 [12] Halimeh J C and Valentin Z S 2017 Phys. Rev. B96 134427 [13] Heyl M and Budich J C 2017 Phys. Rev. B96 180304 [14] Homrighausen I, Abeling N O, Valentin Z and Halimeh J C 2017 Phys. Rev. B96 104436 [15] Heyl M 2018 Rep. Prog. Phys.81 054001 [16] Cheraghi H and Mahdavifar S 2018 J. Phys.: Conden. Matter30 42LT01 [17] Wang P and Gao X 2018 Phys. Rev. A97 023627 [18] Yin H, Chen S, Gao X and Wang P 2018 Phys. Rev. A97 033624 [19] Zhou L, Wang Q, Wang H and Gong J 2018 Phys. Rev. A98 022129 [20] Lang H, Chen Y, Hong Q and Fan H 2018 Phys. Rev. B98 134310 [21] Huang Y P, Banerjee D and Heyl M 2019 Phys. Rev. Lett.122 250401 [22] Jafari R 2019 Sci. Rep.9 2871 [23] Liu T and Guo H 2019 Phys. Rev. B99 104307 [24] Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J and Du J 2019 Phys. Rev. B100 085308 [25] Chen S and Yang C 2019 Acta Phys. Sin.68 220304 (in Chinese) [26] Deng T and Yi W 2019 Acta Phys. Sin.68 040303 (in Chinese) [27] Haldar S, Roy S, Chanda T, Sen(De) A and Sen U 2020 Phys. Rev. B101 224304 [28] Cao K, Li W, Zhong M and Tong P 2020 Phys. Rev. B102 014207 [29] Hou X Y, Gao Q C, Guo H, He Y, Liu T and Chien C C 2020 Phys. Rev. B102 104305 [30] Zamani S, Jafari R and Langari A 2020 Phys. Rev. B102 144306 [31] Fu H, Cao K, Zhong M and Tong P 2021 Acta Phys. Sin.70 480502 (in Chinese) [32] Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R and Roos C F 2017 Phys. Rev. Lett.119 080501 [33] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature551 601 [34] Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W and Xue P 2019 Phys. Rev. Lett.122 020501 [35] Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Yu, Ji Y, Xin T, Lu D and Li J 2020 Phys. Rev. Lett.124 250601 [36] Tian T, Yang H X, Qiu L Y, Liang H Y, Yang Y B, Xu Y and Duan L M 2020 Phys. Rev. Lett.124 043001 [37] Xu X Y, Wang Q Q, Heyl M, Budich J C, Pan W W, Chen Z, Munsif J, Sun K, Xu J S, Han Y J, Li C F and Guo G C 2020 Light: Sci. Appl.9 7 [38] Dzyaloshinsky I 1958 J. Phys. Chem. Solids4 241 [39] Moriya T 1960 Phys. Rev. Lett.4 228 [40] Derzhko O and Richter J 1999 Phys. Rev. B59 100 [41] Yang J, Li J, Lin L and Zhu J J 2020 Chin. Phys. Lett.37 087501 [42] Krokhmalskii T, Derzhko O, Stolze J and Verkholyak T 2008 Phys. Rev. B77 174404 [43] Gottlieb D and Rossler J 1999 Phys. Rev. B60 9232 [44] Kitaev A 2006 Ann. Phys.321 2 [45] Rodney M, Song H F, Lee S S, Le H K and Srensen E S 2013 Phys. Rev. B87 115132 [46] Suzuki S, Inoue J, and Chakrabarti B K 2013 Transverse Ising Chain (Pure System) in Quantum Ising Phases and Transitions in Transverse Ising Models (Berlin: Springer)) p. 13 [47] Zhong M, Xu H, Liu X X and Tong P 2013 Chin. Phys. B22 090313 [48] Liu X, Zhong M, Xu H and Tong P 2012 J. Stat. Mech.2012 P01003
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.