CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhancement of subgap conductance in a graphene superconductor junction by valley polarization |
Chuan-Xin Li(李传新)1, Sa-Ke Wang(汪萨克)2, Jun Wang(汪军)2 |
1 College of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China; 2 Department of Physics, Southeast University, Nanjing 210096, China |
|
|
Abstract We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤3Δ (Δ is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥5Δ. The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.
|
Received: 28 April 2016
Revised: 31 October 2016
Published: 05 February 2017
|
PACS:
|
73.40.Gk
|
(Tunneling)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274059 and 11074233). |
Corresponding Authors:
Jun Wang
E-mail: jwang@seu.edu.cn
|
Cite this article:
Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军) Enhancement of subgap conductance in a graphene superconductor junction by valley polarization 2017 Chin. Phys. B 26 027304
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Sun L F, Fang C and Liang T X 2013 Chin. Phys. B 23 047201
|
[3] |
A L C Pereira and P A Schulz 2008 Phys. Rev. B 77 075416
|
[4] |
Deng W Y, Zhu R, Xiao Y C, Deng W J 2014 Chin. Phys. B 23 017202
|
[5] |
Yokoyama T, Linder J and Sudbo A 2008 Phys. Rev. B 77 132503
|
[6] |
G Tkachov 2009 Phys. Rev. B 79 045429
|
[7] |
Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
|
[8] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[9] |
Ezawa M 2013 Phys. Rev. Lett. 110 026603
|
[10] |
Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
|
[11] |
Kioseglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D and Jonker B T 2012 Appl. Phys. Lett. 101 221907
|
[12] |
Huard B, Scupizio J A, Stander N, Todd K and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
|
[13] |
Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
|
[14] |
Heersche H B, Jarillo-Herrero P, Oestinga J B, Vandersypen L M K and Morpurgo A F 2007 Eur. Phys. J. 148 27
|
[15] |
Tikhonenko F V, Horsell D W, Gorbachev R V and Savchenko A k 2008 Phys. Rev. Lett. 100 056802
|
[16] |
Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
|
[17] |
Rycerz A, Tworzydlo J and Beenakker C W J 2006 arXiv: cond-mat/0608533v2 [cond-mat. mes-hall]
|
[18] |
Feng Z 2012 Phys. Rev. B 85 155415
|
[19] |
Wang J, Yang Y H and Chan K S 2014 Phys. Rev. B 89 064501
|
[20] |
Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405
|
[21] |
Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
|
[22] |
Asano Y, Yoshida T, Tanaka Y and Golubov A A 2008 Phys. Rev. B 78 014514
|
[23] |
Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
|
[24] |
Takashina K, Niida Y, Renard V T, Piot B A, Tregurtha S D, Fujiwara A and Hirayama Y 2013 Phys. Rev. B 88 201301
|
[25] |
Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|