Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027304    DOI: 10.1088/1674-1056/26/2/027304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancement of subgap conductance in a graphene superconductor junction by valley polarization

Chuan-Xin Li(李传新)1, Sa-Ke Wang(汪萨克)2, Jun Wang(汪军)2
1 College of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China;
2 Department of Physics, Southeast University, Nanjing 210096, China
Abstract  We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤3Δ (Δ is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥5Δ. The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.
Keywords:  graphene      valley polarization      subgap conductance      specular Andreev reflection  
Received:  28 April 2016      Revised:  31 October 2016      Published:  05 February 2017
PACS:  73.40.Gk (Tunneling)  
  73.23.Ad (Ballistic transport)  
  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274059 and 11074233).
Corresponding Authors:  Jun Wang     E-mail:  jwang@seu.edu.cn

Cite this article: 

Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军) Enhancement of subgap conductance in a graphene superconductor junction by valley polarization 2017 Chin. Phys. B 26 027304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Sun L F, Fang C and Liang T X 2013 Chin. Phys. B 23 047201
[3] A L C Pereira and P A Schulz 2008 Phys. Rev. B 77 075416
[4] Deng W Y, Zhu R, Xiao Y C, Deng W J 2014 Chin. Phys. B 23 017202
[5] Yokoyama T, Linder J and Sudbo A 2008 Phys. Rev. B 77 132503
[6] G Tkachov 2009 Phys. Rev. B 79 045429
[7] Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
[8] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[9] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[10] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[11] Kioseglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D and Jonker B T 2012 Appl. Phys. Lett. 101 221907
[12] Huard B, Scupizio J A, Stander N, Todd K and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[13] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[14] Heersche H B, Jarillo-Herrero P, Oestinga J B, Vandersypen L M K and Morpurgo A F 2007 Eur. Phys. J. 148 27
[15] Tikhonenko F V, Horsell D W, Gorbachev R V and Savchenko A k 2008 Phys. Rev. Lett. 100 056802
[16] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[17] Rycerz A, Tworzydlo J and Beenakker C W J 2006 arXiv: cond-mat/0608533v2 [cond-mat. mes-hall]
[18] Feng Z 2012 Phys. Rev. B 85 155415
[19] Wang J, Yang Y H and Chan K S 2014 Phys. Rev. B 89 064501
[20] Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405
[21] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[22] Asano Y, Yoshida T, Tanaka Y and Golubov A A 2008 Phys. Rev. B 78 014514
[23] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[24] Takashina K, Niida Y, Renard V T, Piot B A, Tregurtha S D, Fujiwara A and Hirayama Y 2013 Phys. Rev. B 88 201301
[25] Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[13] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
No Suggested Reading articles found!