Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116504    DOI: 10.1088/1674-1056/26/11/116504
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer

Li-Jun Li(李丽君)1,2,3, Shun-Shun Gong(宫顺顺)1, Yi-Lin Liu(刘仪琳)1, Lin Xu(徐琳)1, Wen-Xian Li(李文宪)1, Qian Ma(马茜)3, Xiao-Zhe Ding(丁小哲)1, Xiao-Li Guo(郭晓丽)1
1. College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, China;
2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China;
3. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  The temperature-induced complex refractive index (CRI) effect of graphene is demonstrated theoretically and experimentally based on a graphene coated in-fiber MZI (Mach-Zehnder interferometer). The relationships between real and imaginary parts of the graphene CRI and temperature are obtained through investigating the dip wavelength and intensity of the MZI interference spectrum changing with temperature, respectively. The temperature effect of CRI of the graphene is also analyzed theoretically. Both experimental and theoretical studies show that the real part and imaginary part of the CRI nonlinearly decrease and increase with temperature increasing, respectively. This graphene-coated in-fiber MZI structure also possesses the advantages of easy fabrication, miniaturization, low cost and robustness. It has potential applications in nanomaterial-based optic devices for communication and sensing.
Keywords:  in-fiber Mach-Zehnder interferometer      graphene      temperature-induced      complex refractive index  
Received:  26 June 2017      Revised:  27 July 2017      Accepted manuscript online: 
PACS:  65.80.Ck (Thermal properties of graphene)  
  68.65.Pq (Graphene films)  
  78.67.Wj (Optical properties of graphene)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2009AM017 and ZR2013FM019), the National Postdoctoral Project of China (Grant Nos. 200902574 and 20080441150), the Shandong Provincial Education Department Foundation of China (Grant No. J06P14), and the Opening Foundation of State Key Lab of Minning Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology of China (Grant No. MDPC201602).
Corresponding Authors:  Li-Jun Li     E-mail:  nankaillj@163.com

Cite this article: 

Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽) Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer 2017 Chin. Phys. B 26 116504

[1] Zhou J T, Wang Y P, Liao C R, Sun B, Jun He, Yin G L, Liu S, Li Z Y, Wang G J, Zhong X Y and Zhao J 2015 Sens. Act. B:Chem. 208 315
[2] Zhang X, Shao J X, Ba D D, Feng Z Z, Chen Y F, Shao J Y and Chen X M 2017 Acta Phys. Sin. 66 026103(in Chinese)
[3] Nath P, Singh H K, Datta P and Sarma K C 2008 Sens. Act. A:Phys. 148 16
[4] Bhatia V and Vengsarkar A M 1996 Opt. Lett. 21 692
[5] Luo F, Zhu L Q and Meng K 2017 Chin. Phys. B 26 014205
[6] Kang W, Du Y S and Zheng R L 2017 Acta Phys. Sin. 66 014701(in Chinese)
[7] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M and Shen Y R 2014 Nano Lett. 7 955
[8] Kin F M, Matthew Sfeir Y, Wu Y, Liu C H, James A and Misewich T F 2008 Phys. Rev. Lett. 101 196405
[9] Song C, Xia X S, Hu Z D, Liang Y J and Wang J C 2016 Nanoscale Res. Lett. 11 419
[10] Wang X S, C C, Pan L and Wang J C 2016 Sci. Rep. 6 32616
[11] Erdogan T 1997 J. Opt. Soc. A 14 1760
[12] Li L J, Ma Q, Cao M Y, Zhang G N, Zhang Y, Jiang L, Gao C T, Yao J, Gong S S and Li W X 2016 Sens. Act. B:Chem. 234 674
[13] Jiang B Q, Lu X, Gan X T, Qi M, Wang Y D, Han L, Mao D, Zhang W D, Ren Z Y and Zhao J L 2016 Opt. Lett. 40 3994
[14] Vasu S S, Asokan S and Sood A K 2016 Opt. Lett. 41 2604
[15] Rao Y J, Deng M, Duan D W and Zhu T 2008 Sens. Act. A:Phys. 148 33
[16] Su J, Tong Z R, Cao Y and Zhang W H 2014 Opt. Commun. 315 112
[17] Li L C, Li X, Xie Z H and Liu D M 2012 Opt. Express 20 11109
[18] Harri J, Lu P, Larocque H, Chen L and Bao X 2015 Sens. Act. B:Chem. 206 246
[19] Wang X, Chen Y P and Nolte D D 2008 Opt. Express 16 22105
[20] Sosan C, Kenneth D K, Hong G K, Gyumin L, Jae S P and Joon S L 2014 Rep 4 1
[21] Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, Hans A B, Liang X G, Alex Z Y, Shen R and Wang F 2011 Nat. Nanotech. 1 630
[22] Xu F, Das S, Gong Y, Liu Q, Chien H C, Chiu H Y, Wu J and Hui R 2015 Appl. Phys. Lett. 106 031109
[23] Yao B C, Wu Y, Wang Z G, Cheng Y, Rao Y J, Gong Y, Chen Y F and Li Y R 2013 Opt. Express 25 29818
[24] Sun Q Z, Sun X H, Jia W H, Xu Z L, Luo H P, Liu D M and Zhang L 2016 Photon. Tech. Lett. 28 383
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[14] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[15] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
No Suggested Reading articles found!