Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge, thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene (T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ⊥ first decreases and then increases, and the transition angle is θ=30°. For the parallel transport, the relation between thermal conductivity κ|| and θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.