Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017803    DOI: 10.1088/1674-1056/26/1/017803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier

Feng Xu(徐峰)1,2, Peng Chen(陈鹏)1,2, Fu-Long Jiang(蒋府龙)1, Ya-Yun Liu(刘亚云)1, Zi-Li Xie(谢自立)1, Xiang-Qian Xiu(修向前)1, Xue-Mei Hua(华雪梅)1, Yi Shi(施毅)1, Rong Zhang(张荣)1, You-Liao Zheng(郑有炓)1
1. Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009, China
Abstract  A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells (MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence (PL) properties of the InGaN/AlInGaN MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs (76.1%) is much higher than that of InGaN/GaN MQWs (21%). The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.
Keywords:  AlInGaN superlattices      MQWs      photoluminescence      x-ray diffraction spectrum  
Received:  22 July 2016      Revised:  18 October 2016      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.67.De (Quantum wells)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, BE2015111, and BK20161324), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0229), and the Special Semiconductor Materials and Devices Research Funds from State Grid Shandong Electric Power Company, China.
Corresponding Authors:  Peng Chen     E-mail:  pchen@nju.edu.cn

Cite this article: 

Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓) High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier 2017 Chin. Phys. B 26 017803

[1] Tu P M, Chang C Y, Huang S C, Chiu C H, Chang J R, Chang W T, Wuu D S, Zan H W, Lin C C, Kuo H C and Hsu C P 2011 Appl. Phys. Lett. 98 211107
[2] Neugebauer S, Metzner S, Bläsing J, Bertram F, Dadgar A, Christen J and Strittmatter A 2015 Physica. Status. Solidi. (b) 253 118
[3] Liu J Z, Lin C H, Lee K Y, Wang Y L, Liao C L, Chang Y F, Ho C L and Wu M C 2015 IEEE J. Quantum. Elect. 51 1
[4] Zhu M, Zhang X, Wang S, Yang H Q and Cui Y P 2014 J. Mater. Sci.-Mater. El. 26 705
[5] Lee S N, Paek H S, Kim H, Kima K K, Chob Y H, Janga T and Parka Y 2008 J. Cryst. Growth 310 3881
[6] Shang J S, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabec K and Ohkawa K 2009 J. Cryst. Growth 311 474
[7] Jones L M, Fagan S and Mair E A 2014 Appl. Phys. Lett. 104 051258
[8] Broeck D M V D, Bharrat D, Hosalli A M, El-Masry N A and Bedair S M 2014 Appl. Phys. Lett. 105 3
[9] Wang F, Li S S, Xia J B and Jiang H X 2007 Appl. Phys. Lett. 91 061125
[10] Cai J H, Sun H Q, Zhen H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 630
[11] YU T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211
[12] Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hu X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341
[13] Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245
[14] Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
[15] Soh C B, Chua S J, Liu W, Lai M Y and Tripathy S 2005 Solid. State. Commun. 136 421
[16] Liu Q J, Shao Y, Wu Z L, Xu Z, Xu F, Liu B, Xie Z L and Chen P 2009 Acta Phys. Sin. 58 7194
[17] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[18] Nishinaka J, Funato M, Kido R and Kawakami Y 2016 Phys. Status. Solidi 253 78
[19] Xiong J Y, Xu Y Q, Zhao F, Song J J, Ding B B, Zheng S W, Zhang T and Fan G H 2013 Chin. Phys. B 22 108505
[20] Watababe K, Yang J R, Huang S Y, Inoke K, Hsu J T, Tu R C, Yamazaki T, Nakanishi N and Shiojiri M 2003 Appl. Phys. Lett. 82 718
[21] Liu W, Soh CB, Chen P and Chua S J 2004 J. Cryst. Growth 268 509
[22] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L and Shan Y 2014 Acta Phys. Sin. 63 207304(in Chinese)
[23] Chen G F, Tan X D, Wan W T, Shen J, Hao Q Y, Tang C C, Zhu J J, Liu Z S, Zhao D G and Zhang S M 2011 Acta Phys. Sin. 60 076104(in Chinese)
[24] Cao W Y, He Y F, Chen Z, Yang W, Du W M and Hu X D 2013 Chin. Phys. B 22 076803
[25] Yu E T and Manasreh O 2002 III-V Nitride Semiconductors:Applications and Devices (CRC Press) pp. 17-22
[26] Chen P, Chen A, Chua S J and Tan J N 2007 Adv. Mater. 19 1707
[27] Zhang J P, Yang J, Simin G, Shatalov M, Khan M A, Shur M S and Gaska R 2000 Appl. Phys. Lett. 77 2668
[28] Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
[29] Meneghini M, Grassa M L, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G and Zanoni E 2014 Appl. Phys. Lett. 104 113505
[30] Gotz W, Johnson N M, Chen C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144
[31] Lai Y L, Liu C P, Lin Y H, Hsuch T H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Nanotechnology 17 3734
[32] Yoichi Y, Kazuto I, Takahiro K, Naohiko S, Tsunemasa T, Hiromitsu K and Hiroaki O 2008 J. Light & Vis. Env. 32 191
[33] Wang X S, Ji Z W, Wang H N, Xu M S, Xu X G, Lu Y J and Feng Z H 2014 Acta Phys. Sin. 63 127801(in Chinese)
[1] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[2] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[3] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[4] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[5] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[6] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[7] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[8] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[9] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[10] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[11] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[12] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
[13] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[14] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[15] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
No Suggested Reading articles found!