Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067801    DOI: 10.1088/1674-1056/25/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles studies of electronic, optical, and mechanical properties of γ-Bi2Sn2O7

Chao-Hao Hu(胡朝浩)1,2, Xue-Hui Yin(殷学辉)1,2, Dian-Hui Wang(王殿辉)3, Yan Zhong(钟燕)1,2, Huai-Ying Zhou(周怀营)1,2, Guang-Hui Rao(饶光辉)1,2
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
2 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  

The detailed theoretical studies of electronic, optical, and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations. Our calculated results indicate that γ-Bi2Sn2O7 is the p-type semiconductor with an indirect band gap of about 2.72 eV. The flat electronic bands close to the valence band maximum are mainly composed of Bi-6s and O-2p states and play a key role in determining the electrical properties of γ-Bi2Sn2O7. The calculated complex dielectric function and macroscopic optical constants including refractive index, extinction coefficient, absorption coefficients, reflectivity, and electron energy-loss function show that γ-Bi2Sn2O7 is an excellent light absorbing material. The analysis on mechanical properties shows that γ-Bi2Sn2O7 is mechanically stable and highly isotropic.

Keywords:  γ-Bi2Sn2O7      electronic structure      optical properties      first-principle calculations  
Received:  13 January 2016      Revised:  26 February 2016      Published:  05 June 2016
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB643703), the National Natural Science Foundation of China (Grant Nos. 11164005, 11464008, and 51401060), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFGA118001 and 2012GXNSFGA060002), and the Fund from Guangxi Provincial Key Laboratory of Information Materials of Guangxi Zhuang Autonomous Region, China (Grant Nos. 1210908-215-Z and 131022-Z).

Corresponding Authors:  Chao-Hao Hu     E-mail:  chaohao.hu@guet.edu.cn

Cite this article: 

Chao-Hao Hu(胡朝浩), Xue-Hui Yin(殷学辉), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉) First-principles studies of electronic, optical, and mechanical properties of γ-Bi2Sn2O7 2016 Chin. Phys. B 25 067801

[1] Abe R, Higashi M, Zou Z, Sayama K and Abe Y 2004 Chem. Lett. 33 954
[2] Park S, Song H, Choi H and Moon J 2004 Solid State Ionics 175 625
[3] Bramwell S T and Gingras M J P 2001 Science 294 1495
[4] Hanawa M, Muraoka Y, Tayama T, Sakakibara T, Yamamura J and Hiroi Z 2001 Phys. Rev. Lett. 87 187001
[5] Roth R S 1956 J. Res. Nat. Bur. Stand. 56 17
[6] Brisse F and Knop O 1968 Can. J. Chem. 46 859
[7] Subramaniam M A, Aravamudan G and Subba Rao G V 1983 Prog. Solid State Chem. 15 55
[8] Kahlenberg V and Zeiske T 1997 Z. Kristallogr. 212 297
[9] Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G and Liu J M 2007 Adv. Mater. 19 2889
[10] Tang J W, Zou Z G and Ye J H 2004 Catal. Lett. 92 53
[11] Yu J and Kudo A 2006 Adv. Funct. Mater. 16 2163
[12] Wu J, Huang F, Lü X, Chen P, Wan D and Xu F 2011 J. Mater. Chem. 21 3872
[13] Tian Q, Zhuang J, Wang J, Xie L and Liu P 2012 Appl. Catal. A: Gen. 425-426 74
[14] Xu W, Fang J, Zhu X, Fang Z and Chen C 2015 Mater. Res. Bull. 72 229
[15] Walsh A and Watson G W 2007 Chem. Mater. 19 5158
[16] Fan W, Hu J, Huang J, Wu X, Lin S, Huang C and Qiu X 2015 Appl. Surf. Sci. 357 2364
[17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[18] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[19] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Adolph B, Furthmüller J and Bechstedt F 2001 Phys. Rev. B 63 125108
[23] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[24] Kahlenberg V and Zeiske T Z 1997 Z. Kristallogr. 212 297
[25] Hill R 1952 Proc. Phys. Soc. London 65 349
[26] Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley)
[27] Pugh S F 1954 Philos. Mag. 45 823
[28] Zener C 1948 Elasticity and Anelasticity of Metals (Chicago: University of Chicago Press)
[29] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[3] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[6] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[7] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[10] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[11] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[12] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[13] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[14] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[15] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
No Suggested Reading articles found!