Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 064204    DOI: 10.1088/1674-1056/25/6/064204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Control of dispersion in fiber coupled resonator-induced transparency structure

He Tian(田赫)1, Yun-Dong Zhang(掌蕴东)2, Da-Wei Qi(戚大伟)1, Run-Zhou Su(苏润洲)1, Yan Bai(白岩)3, Qiang Xu(徐强)1
1 College of Science, Northeast Forestry University, Harbin 150040, China;
2 Institute of Opto-Electronics and National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080, China;
3 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
Abstract  

Induced transparency phenomena and strong dispersion can be produced in a coupled resonator induced transparency (CRIT) structure. In this paper, we investigate the influences of structure parameters, such as amplitude reflection coefficient and loss, on transmission spectrum and dispersion of CRIT structure, and further study the control of dispersion in the structure. The results show that in the CRIT structure, adjusting the loss of resonators is an effective method of controlling dispersion and producing simultaneous normal and abnormal dispersion. When we choose approximate amplitude reflection coefficients of the two couplers, the decrease of transmittance due to loss could be effectively made up. In the experiment, we achieve the control of dispersion and simultaneous strong normal and abnormal dispersion in the CRIT structure comprised of fiber. The results indicate the CRIT structure has potential applications in optical signal processing and optical communication.

Keywords:  dispersion      coupled resonator      induced transparency  
Received:  03 December 2015      Revised:  23 December 2015      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61307076 and 61275066), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAF14B11), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q14042).

Corresponding Authors:  He Tian     E-mail:  tianhe176176@163.com

Cite this article: 

He Tian(田赫), Yun-Dong Zhang(掌蕴东), Da-Wei Qi(戚大伟), Run-Zhou Su(苏润洲), Yan Bai(白岩), Qiang Xu(徐强) Control of dispersion in fiber coupled resonator-induced transparency structure 2016 Chin. Phys. B 25 064204

[1] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[2] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[3] Su H and Chuang S L 2006 Opt. Lett. 31 271
[4] Phillips N B, Gorshkov A V and Novikova I 2008 Phys. Rev. A 78 023801
[5] Stepanov S and Hernandez E H 2008 Opt. Lett. 33 2242
[6] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 200
[7] Schneider T, Junker M and Lauterbach K 2007 Opt. Lett. 32 220
[8] Podivilov E, Sturman B, Shumelyuk A and Odoulov S 2003 Phys. Rev. Lett. 91 083902
[9] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[10] Heebner J E, Boyd R W and Park Q H 2002 Phys. Rev. E 65 036619
[11] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[12] Sekiguchi G, Kobayashi N and Kokubun Y 2006 IEEE Photon. Technol. Lett. 18 2141
[13] Morand A, Zhang Y, Martin B, Huy K P, Amans D and Benech P 2006 Opt. Express 14 12814
[14] Hamidi S M, Bananej A and Tehranchi M M 2008 Opt. Commun. 281 4917
[15] Zhang Y D, Wang N, Wang H, Tian H, Qiu W, Wang J F and Yuan P 2010 Chin. Phys. B 19 014216
[16] Tian H, Zhang Y D, Wang H, Ouyang Q Y, Wang N and Yuan P 2009 Chin. Phys. B 18 221
[17] Huang C H, Lai Y H, Cheng S C and Hsieh W F 2009 Opt. Express 17 1299
[18] Zhang Y D, Tian H, Zhang X N, Wang N, Zhang J, Wu H and Yuan P 2010 Opt. Lett. 35 691
[19] Tian H, Zhang Y D, Zhang X N, Wu H and Yuan P 2011 Opt. Express 19 9185
[20] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[21] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[22] Kekatpure R D, Barnard E S, Cai W S and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[23] Zeng C, Guo J and Liu X M 2014 Appl. Phys. Lett. 105 121103
[24] Zeng C, Cui Y D and Liu X M 2015 Opt. Express 23 545
[25] Sultana P, Takami A, Matsumoto T and Tomita M 2010 Opt. Lett. 35 3414
[26] Mancinelli M, Bettotti P, Fedeli J M and Pavesi L 2012 Opt. Express 20 23856
[27] Ang T Y L and Ngo N Q 2012 J. Opt. Soc. Am. B 29 1094
[28] Lu Y, Xu L J, Shu M L, Wang P and Yao J Q 2008 IEEE Photon. Technol. Lett. 20 529
[29] Mancinelli M, Guider R, Bettotti P, Masi M, Vanacharla R and Pavesi L 2011 Opt. Express 19 12227
[30] Lu H, Liu X M, Mao D, Gong Y K and Wang G X 2011 Opt. Lett. 36 3233
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[6] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[10] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[11] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[12] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[13] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[14] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[15] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
No Suggested Reading articles found!