Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118801    DOI: 10.1088/1674-1056/25/11/118801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Control of epitaxial growth at a-Si: H/c-Si heterointerface by the working pressure in PECVD

Yanjiao Shen(沈艳娇)1, Jianhui Chen(陈剑辉)1, Jing Yang(杨静)1, Bingbing Chen(陈兵兵)1, Jingwei Chen(陈静伟)1, Feng Li(李峰)2, Xiuhong Dai(代秀红)1, Haixu Liu(刘海旭)1, Ying Xu(许颖)1, Yaohua Mai(麦耀华)1
1 Institute of Photovoltaics, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
2 State Key Laboratory of Photovoltaic Materials & Technology, Yingli Green Energy Holding Co., Ltd., Baoding 071051, China
Abstract  The epitaxial-Si (epi-Si) growth on the crystalline Si (c-Si) wafer could be tailored by the working pressure in plasma-enhanced chemical vapor deposition (PECVD). It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon (a-Si:H)/c-Si interface is suppressed at high pressure (hp) and occurs at low pressure (lp). The hp a-Si:H, as a purely amorphous layer, is incorporated in the lp-epi-Si/c-Si interface. We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough; (ii) with the increase of the inserted hp layer thickness, lp epi-Si at the interface is suppressed, and the fraction of a-Si:H in the thin films increases and that of c-Si decreases, corresponding to the increasing minority carrier lifetime of the sample. Not only the epitaxial results, but also the quality of the thin films at hp also surpasses that at lp, leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase.
Keywords:  hydrogenated amorphous silicon(a-Si:H)      epitaxial growth      interface      plasma-enhanced chemical vapor deposition(PECVD)  
Received:  30 May 2016      Revised:  17 July 2016      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
  77.55.Px (Epitaxial and superlattice films)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2015201203) and the International Society for Theoretical Chemical Physics of China (Grant No. 2015DFE62900).
Corresponding Authors:  Jianhui Chen, Yaohua Mai     E-mail:  chenjianhui@hbu.edu.cn;yaohuamai@hbu.edu.cn

Cite this article: 

Yanjiao Shen(沈艳娇), Jianhui Chen(陈剑辉), Jing Yang(杨静), Bingbing Chen(陈兵兵), Jingwei Chen(陈静伟), Feng Li(李峰), Xiuhong Dai(代秀红), Haixu Liu(刘海旭), Ying Xu(许颖), Yaohua Mai(麦耀华) Control of epitaxial growth at a-Si: H/c-Si heterointerface by the working pressure in PECVD 2016 Chin. Phys. B 25 118801

[1] Matsuyama K, Yano A, Tohoda S, Nakamura Y, Nishiwaki T, Fujita K, Taguchi M and Maruyama E 2014 Grand Renewable Energy 2014 Abstracts, 27 July-1 August, 2014, Tokyo, Japan
[2] http://news.panasonic.com/global/press/data/2014/04/en140410-4/en140410-4.html
[3] Zhou H P, Wei D Y, Xu S, Xiao S Q and Xu L X 2012 J. Appl. Phys. 112 013708
[4] Kim S, Dao V A, Lee Y, Shin C, Park J, Cho J and Yi J 2013 Sol. Energy Mater. 117 174
[5] Wang T H, Iwaniko E, Page M R, Levi D H, Yan Y, Branz H M and Wang Q 2006 Solid Films 501 284
[6] Fujiwara H and Kondo M 2007 Appl. Phys. Lett. 90 013503
[7] Fujiwara H and Kondo M 2005 Appl. Phys. Lett. 86 032112
[8] Damon-Lacostea J and Cabarrocas P R I 2009 J. Appl. Phys. 105 063712
[9] Nakada K, Irikawa J, Miyajima S and Konagai M 2015 Jpn. J. Appl. Phys. 54 052303
[10] Hekmatshoar B, Shahrjerdi D, Hopstaken M, Ott J A and Sadana D K 2012 Appl. Phys. Lett. 101 103906
[11] Rizzoli R, Centurioni E, Plá J, Summonte C, Migliori A, Desalvo A and Zignani F 2001 J. Non-Cryst. Solids 299-302 1203
[12] Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F et al. 2005 J. Appl. Phys. 97 114913
[13] Cabarrocas P R I, Nguyen-Tran T, Djeridane Y, Abramov1 A, Johnson E and Patriarche G 2007 J. Phys. D:Appl. Phys. 40 2258
[14] Levi D H, Teplin C W, Iwaniczko E, Yan Y, Wang T H and Branz H M 2006 J. Vac. Sci. Technol. 24 1676
[15] Filonovich S A, Águas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M and Silva L B 2009 Vacuum 83 1253
[16] Fontcuberta i Morral A, Roca i Cabarrocas P and Clerc C 2004 Phys. Rev. B 69 125307
[17] Fujiwara H, Koh J, Rovira P I and Collins R W 2000 Phys. Rev. B 61 10832
[18] Mui K and Smith F W 1988 Phys. Rev. B 38 10623
[19] Kim S, Dao V A, Shin C, Cho J, Lee Y and Balaji N 2012 Thin Solid Films 521 45
[20] Li T T, Yang T, Fang J, Zhang D K, Sun J, Wei C C, Xu S Z, Wang G C, Liu C C, Zhao Y and Zhang X D 2016 Chin. Phys. B 25 046101
[21] Chen L, Wang Q K, Shen X Q, Chen W, Huang K and Liu D M 2015 Chin. Phys. B 24 104201
[22] Eaglesham D J, White A E, Feldman L C, Moriya N and Jacobson D C 1993 Phys. Rev. Lett. 70 1643
[23] Liu W Z, Zhang L P, Meng F Y, Guo W W, Bao J, Liu J N, Wang D L and Liu Z X 2015 Scripta Materialia 107 50
[24] Descoeudres A, Barraud L, Bartlome R, Choong G, Wolf S D, Zicarelli F and Ballif C 2010 Appl. Phys. Lett. 97 183505
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[5] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[6] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[15] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
No Suggested Reading articles found!