Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118402    DOI: 10.1088/1674-1056/25/11/118402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An ultra-wideband pattern reconfigurable antenna based on graphene coating

YanNan Jiang(姜彦南)1,2,3, Rui Yuan(袁锐)1, Xi Gao(高喜)1,2, Jiao Wang(王娇)1,2,3, SiMin Li(李思敏)2, Yi-Yu Lin(林诒玉)1,2
1 Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin 541004, China;
2 Key Laboratory of Cognitive Radio and Information Processing(Ministry of Education), Guilin University of Electronic Technology, Guilin 541004, China;
3 Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%.
Keywords:  ultra-wideband pattern reconfigurable antenna      graphene      impedance surface  
Received:  20 April 2016      Revised:  19 July 2016      Published:  05 November 2016
PACS:  84.40.Ba (Antennas: theory, components and accessories)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
Corresponding Authors:  Jiao Wang     E-mail:  wangjiao@guet.edu.cn

Cite this article: 

YanNan Jiang(姜彦南), Rui Yuan(袁锐), Xi Gao(高喜), Jiao Wang(王娇), SiMin Li(李思敏), Yi-Yu Lin(林诒玉) An ultra-wideband pattern reconfigurable antenna based on graphene coating 2016 Chin. Phys. B 25 118402

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[3] Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[4] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[5] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 45 7706
[6] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[7] Murali R, Brenner K, Yang Y, Beck T and Meindl J D 2009 IEEE Electron Device Lett. 30 611
[8] Vakil A and Engheta N 2011 Science 332 1291
[9] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
[10] Chen P Y, Argyropoulos C and Alu A 2013 IEEE Transactions on Antennas and Propagation 61 1528
[11] He S and Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757
[12] Xu B Z, Gu C Q, Li Z, Liu L L and Niu Z Y 2014 IEEE Antennas and Wireless Propagation Letters 13 822
[13] Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X and Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)
[14] Aldrigo M, Dragoman M, Costanzo A and Dragoman D 2014 J. Appl. Phys. 116 114302
[15] Wang X C, ZhaoW S, Hu J and Yin W Y 2015 IEEE Transactions on Nanotechnology 14 62
[16] Esquius-Morote M, Gomez-Diaz J S and Perruisseau-Carrier J 2014 IEEE Transactions on Terahertz Science and Technology 4 116
[17] Carrasco E and Perruisseau-Carrier J 2013 IEEE Antennas and Wireless Propagation Letters 12 253
[18] Chen X H, Yao Y, Qu S W, Wu Y S and Chen X D 2016 Electronics Letters 52 494
[19] Anand S T, Mayur S D and Sriram K D 2015 Physica E 66 67
[20] Rajni B and Anupma M 2016 Optik 127 2089
[21] Skulason H S, Nguyen H V, Guermoune A, Sridharan V, Siaj M, Caloz C and Szkopek T 2011 Appl. Phys. Lett. 99 153504
[22] Dragoman M, Neculoiu D, Cismaru A, Muller A A, Deligeorgis G, Konstantinidis G, Plana R and Dragoman D 2011 Appl. Phys. Lett. 99 033112
[23] Huang Y, Wu L S, Tang M and Mao J 2012 IEEE Transactions on Nanotechnology 11 836
[24] Tamagnone M, Gomez-Diaz J S, Mosig J and Perruisseau-Carrier J 2013 IEEE MTT-S International Microwave Symposium digest (IMS), June 2-7, 2013, Seattle, USA, p. 1
[25] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[26] Zaretski A V, Moetazedi H, Kong C, Sawyer E J, Savagatrup S, Valle E, O'Connor T F, Printz A D and Lipomi D J 2015 Nanotechnology 26 045301
[27] Hanson G W 2008 J. Appl. Phys. 103 064302
[28] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.:Condens. Matter 19 026222
[29] Lu J H and Yeh C H 2012 IEEE Transactions on Antenna and Propagation 60 3091
[30] Tuovinen T and Berg M 2014 Progress in Electromagnetics Research 144 249
[31] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Transactions on Antenna and Propagation 63 3522
[32] Jiang Y N, Zhang W C, Wang J, Cao W P and Lin Y Y 2016 Eur. Phys. J. Appl. Phys. 73 11301
[33] Ziolkowski R W and Kipple A D 2003 IEEE Transactions on Antenna and Propagation 51 2626
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[13] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
No Suggested Reading articles found!