Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036301    DOI: 10.1088/1674-1056/24/3/036301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Two-dimensional arsenic monolayer sheet predicted from first-principles

Pu Chun-Ying (濮春英)a, Ye Xiao-Tao (叶小涛)b, Jiang Hua-Long (蒋华龙)a, Zhang Fei-Wu (张飞武)c d, Lu Zhi-Wen (卢志文)a, He Jun-Bao (何俊宝)a, Zhou Da-Wei (周大伟)a
a College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
b College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;
c Nanochemistry Research Institute, Curtin University, Perth, WA-6845, Australia;
d State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract  

Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 eV in the hybrid HSE06 functional calculations. The valence band maximum (VBM) and the conduction band minimum (CBM) are mainly occupied by the 4p orbitals of arsenic atoms, which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are -4.83 GPa and -4.76 GPa with corresponding strains of -0.15 and -0.14, respectively.

Keywords:  arsenic sheet      hybrid density functional      strain  
Received:  12 August 2014      Revised:  28 September 2014      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  62.25.-g (Mechanical properties of nanoscale systems)  
Fund: 

Projected supported by the Henan Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1304612 and U1404608), the National Natural Science Foundation of China (Grant Nos. 51374132 and 11404175), the Special Fund for Theoretical Physics of China (Grant No. 11247222), and Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018 and ZX2013019).

Corresponding Authors:  Zhou Da-Wei     E-mail:  zhoudawei@nynu.edu.cn

Cite this article: 

Pu Chun-Ying (濮春英), Ye Xiao-Tao (叶小涛), Jiang Hua-Long (蒋华龙), Zhang Fei-Wu (张飞武), Lu Zhi-Wen (卢志文), He Jun-Bao (何俊宝), Zhou Da-Wei (周大伟) Two-dimensional arsenic monolayer sheet predicted from first-principles 2015 Chin. Phys. B 24 036301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Wu H Q, Linghu C Y, Lü H M and Qian H 2013 Chin. Phys. B 22 098106
[4] Wang X R, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
[5] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
[6] Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
[7] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[8] Dai J, Zhao Y, Wu X J, Yang J L and Zeng X C 2013 J. Phys. Chem. Lett. 4 561
[9] Mak K F, Lee C G and Hone J 2010 Phys. Rev. Lett. 105 136805
[10] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[11] Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J and Xie Y 2011 J. Am. Chem. Soc. 133 17832
[12] Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J and Xie Y 2012 Adv. Mater. 24 1969
[13] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem., Int. Ed. 51 8727
[14] Xu M S, Yang T, Shi M M, Wu G and Chen H Z 2013 Chem. Rev. 113 3766
[15] Peng Q and De S 2013 RSC Adv. 3 24337
[16] Osada M and Sasaki T 2012 Adv. Mater. 24 210
[17] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
[18] Freeman C L, Claeyssens F and Allan N L 2006 Phys. Rev. Lett. 96 066102
[19] Cahangirov S, Topsakal E, Aktürk M, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[20] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[21] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[22] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[23] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
[24] Gao J F and Zhao J J 2012 Sci. Rep. 2 861
[25] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y J and Wang H T 2014 Phys. Rev. Lett. 112 085502
[26] Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L and Zeng X C 2012 ACS Nano 6 7443
[27] Yu X, Li L, Xu X W and Tang C C 2012 J. Phys. Chem. C 116 20075
[28] Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820
[29] Liu H S, Gao J F and Zhao J J 2013 Sci. Rep. 3 3238
[30] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S and Boldyrev A I 2014 Acc. Chem. Res. 47 1349
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[35] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[36] Voon L C L Y, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[37] Houssa M, Pourtois G, Afanasév V V, et al. 2011 Appl. Phys. Lett. 98 223107
[38] Ding Y and Wang Y L 2012 Appl. Phys. Lett. 100 083102
[39] Zhao J J, Zhou X L, Chen X S, Wang J L and Jellinek J 2006 Phys. Rev. B 73 115418
[40] Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440
[41] Gul R 2014 Europhys. Lett. 105 37012
[42] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!