CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural phase transitions of tellurium nanoplates under pressure |
Li Chao (李超)a, Arfan Bukhtiarb, Shen Xi (沈希)a, Kong Pan-Pan (孔盼盼)a, Wang Wei-Peng (王伟鹏)a, Zhao Hao-Fei (赵豪飞)a, Yao Yuan (姚湲)a, Zou Bing-Suo (邹炳锁)b, Li Yan-Chun (李延春)c, Li Xiao-Dong (李晓东)c, Liu Jing (刘景)c, Jin Chang-Qing (靳常青)a, Yu Ri-Cheng (禹日成)a |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China;
c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-I with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-IV at about 23.8 GPa, and Te-IV changes to body centered cubic Te-V at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.
|
Received: 05 October 2014
Revised: 10 December 2014
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
61.05.cf
|
(X-ray scattering (including small-angle scattering))
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB932302) and the National Natural Science Foundation of China (Grant Nos. 10974235 and 11174336). |
Corresponding Authors:
Yu Ri-Cheng
E-mail: rcyu@aphy.iphy.ac.cn
|
Cite this article:
Li Chao (李超), Arfan Bukhtiar, Shen Xi (沈希), Kong Pan-Pan (孔盼盼), Wang Wei-Peng (王伟鹏), Zhao Hao-Fei (赵豪飞), Yao Yuan (姚湲), Zou Bing-Suo (邹炳锁), Li Yan-Chun (李延春), Li Xiao-Dong (李晓东), Liu Jing (刘景), Jin Chang-Qing (靳常青), Yu Ri-Cheng (禹日成) Structural phase transitions of tellurium nanoplates under pressure 2015 Chin. Phys. B 24 036401
|
[1] |
Aoki K, Shimomura O and Minomura S 1980 J. Phys. Soc. Jpn. 48 551
|
[2] |
Parthasarathy G and Holzapfel W B 1988 Phys. Rev. B 37 8499
|
[3] |
Jamieson J C and McWhan D B 1965 J. Chem. Phys. 43 1149
|
[4] |
Takumi M, Masamitsu T and Nagata K 2002 J. Phys.: Condens. Mater. 14 10609
|
[5] |
Hejny C and McMahon M I 2003 Phys. Rev. Lett. 91 215502
|
[6] |
Hejny C and McMahon M I 2004 Phys. Rev. B 70 184109
|
[7] |
Marini C, Chermisi D, Lavagnini M, Castro D D, Petrillo C, Degiorgi L, Scandolo S and Postorino P 2012 Phys. Rev. B 86 064103
|
[8] |
Song J M, Lin Y Z, Zhan Y J, Tian Y C, Liu G and Yu S H 2008 Cryst. Growth Des. 8 1902
|
[9] |
Beauvais J, Lessard R A, Galarneau P and Knystautas E 1990 J. Appl. Phys. Lett. 57 1354
|
[10] |
She G W, Shi W S, Zhang X H, Wong T L, Cai Y and Wang N 2009 Cryst. Growth Des. 9 663
|
[11] |
Gautam U K and Rao C N R 2004 J. Mater. Chem. 14 2530
|
[12] |
Engelhard T, Jones E D, Viney I, Mastai Y and Hodes G 2000 Thin Solid Films 370 101
|
[13] |
Souilhac D, Billerey D and Gundjian A 1990 Appl. Opt. 29 1798
|
[14] |
Liu Z P, Li S, Yang Y, Hu Z K, Peng S, Liang J B and Qian Y T 2003 New J. Chem. 27 1748
|
[15] |
Mayers B and Xia Y N 2002 J. Mater. Chem. 12 1875
|
[16] |
Mayers B and Xia Y N 2002 Adv. Mater. 14 279
|
[17] |
Zhu H T, Zhang H, Liang J K, Rao G H, Li J B, Liu G Y, Du Z M, Fan H M and Luo J 2011 Phys. Chem. C 115 6375
|
[18] |
Wang S, Guan W P, Ma D K, Chen X, Wan L, Huang S M and Wang J C 2010 Cryst. Eng. Commun. 12 166
|
[19] |
Wang S, Zhang K J, Zhou H A, Guan W P, Ma D K, Lin J J, Zhang L J, Huang S M and Wang J C 2010 Cryst. Eng. Commun. 12 3852
|
[20] |
Deng Z T, Bao Z X, Cao L, Chen D, Tang F Q, Wang F F, Liu C X, Zou B S and Muscat A J 2008 Nanotechnology 19 045707
|
[21] |
Murnaghan F D 1944 Proc. Nati. Acad. Sci. USA 30 244
|
[22] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[23] |
McCann D R and Cartz L 1972 J. Appl. Phys. 43 4473
|
[24] |
Lingelbach W, Stuke J, Weiser G and Trensch J 1972 Phys. Rev. B 5 243
|
[25] |
Jiang S, Liu J, Li X D, Bai L G, Xiao W S, Zhang Y F, Lin C L, Li Y C and Tang L Y 2011 Appl. Phys. Lett. 110 013526
|
[26] |
Jiang S, Liu J, Lin C L, Bai L G, Zhang Y F, Li X D, Li Y C, Tang L Y and Wang H 2013 Solid State Commun. 169 37
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|