Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068102    DOI: 10.1088/1674-1056/23/6/068102

Depth-dependent mosaic tilt and twist in GaN epilayer:An approximate evaluation

Zhang Jin-Feng, Nie Yu-Hu, Zhou Yong-Bo, Tian Kun, Ha Wei, Xiao Ming, Zhang Jin-Cheng, Hao Yue
School of Microelectronics, Key Laboratory of Wide Bandgap Semiconductor Materials and Devices of Ministry of Education, Xidian University, Xi'an 710071, China
Abstract  An approach based on depth-sensitive skew-angle x-ray diffraction (SAXRD) is presented for approximately evaluating the depth-dependent mosaic tilt and twist in wurtzite c-plane GaN epilayers. It is found that (103) plane and (101) plane, among the lattice planes not perpendicular to the sample surface, are the best choices to measure the depth profiles of tilt and twist for a GaN epilayer with a thickness of less than 2 μm according to the diffraction geometry of SAXRD. As an illustration, the depth-sensitive (103)/(101) ω -scans of a 1.4-μm GaN film grown by metal-organic chemical vapor deposition on sapphire substrate are measured and analyzed to show the feasibility of this approach.
Keywords:  mosaic structure      tilt and twist      skew angle x-ray diffraction      GaN  
Received:  21 December 2013      Revised:  17 February 2014      Published:  15 June 2014
PACS:  81.05.Ea (III-V semiconductors)  
  61.72.Dd (Experimental determination of defects by diffraction and scattering)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61306017 and 61204006), the Key Program of the National Natural Science Foundation of China (Grant No. 61334002), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225016 and K5051325020).
Corresponding Authors:  Zhang Jin-Feng     E-mail:

Cite this article: 

Zhang Jin-Feng, Nie Yu-Hu, Zhou Yong-Bo, Tian Kun, Ha Wei, Xiao Ming, Zhang Jin-Cheng, Hao Yue Depth-dependent mosaic tilt and twist in GaN epilayer:An approximate evaluation 2014 Chin. Phys. B 23 068102

[1] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[2] Xu Z J 2007 Semiconductor Characterization and Analysis, 2nd edn. (Beijing: Science Press) p. 160 (in Chinese)
[3] Lin Z Y, Zhang J C, Zhou H, Li X G, Meng F N, Zhang L X, Ai S, Xu S R, Zhao Y and Hao Y 2012 Chin. Phys. B 21 126804
[4] Xue J S, Hao Y, Zhang J C and Ni J Y 2010 Chin. Phys. B 19 057203
[5] Oehler F, Zhu T, Rhode S, Kappers M J, Humphreys C J and Oliver R A 2013 J. Cryst. Growth 383 12
[6] Suihkonen S, Ali M, Torma P T, Sintonen S, Svensk O, Sopanen M, Lipsanen H, Nevedomsky V N and Bert N A 2013 Jpn. J. Appl. Phys. 52 01AF01
[7] Barchuk M, Roder C, Shashev Y, Lukin G, Motylenko M, Kortus J, Patzold O and Rafaja D 2014 J. Cryst. Growth 386 1
[8] Li L, Yang L A, Cao R, Xu S R, Zhou X, Xue J, Lin Z, Ha W, Zhang J and Hao Y 2014 J. Cryst. Growth 387 1
[9] Gao Z Y, Hao Y, Zhang J C, Li P X and Gu W P 2009 Chin. Phys. B 18 4970
[10] Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Qin Z X and Zhang G Y 2007 Chin. Phys. Lett. 24 1682
[11] Otoki Y, Tanaka T, Kamogawa H, Kaneda N, Mishima T, Honda U and Tokuda Y 2013 28th International Conference on Compound Semiconductor Manufacturing Technology, New Orleans, LA, USA p. 109
[12] Killat N, Bajo M M, Paskova T, Evans K R, Leach J, Li X, Ozgur U, Morkoc H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D and Kuball M 2013 Appl. Phys. Lett. 103 193507
[13] Lyons M H and Halliwell M A G 1985 Proceedings of the Royal Microscopical Society Conference (Bristol, UK: Adam Hilger) p. 445
[14] Miles S J, Green G S, Tanner B K, Halliwell M A G and Lyons M H 1989 Mater. Res. Soc. Symp. Proc. 138 539
[15] Itoh N 1993 Appl. Phys. Lett. 62 690
[16] Reiher A, Blasing J, Dadgar A and Krost A 2004 Appl. Phys. Lett. 84 3537
[17] Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys. 82 4286
[18] Shen X Q, Matsuhata H and Okumura H 2005 Appl. Phys. Lett. 86 021912
[19] Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T and Hao Y 2009 Chin. Phys. B 18 5457
[20] McAleese C, Kappers M J, Rayment F D G, Cherns P and Humphyreys C J 2004 12th International Conference on Metalorganic Vapor Phase Epitaxy (Netherlands: Elsevier) 272 475
[21] Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
[22] Norman C E, Hogg R A, Shields A J and Iizuka N 1999 3rd International Conference on Nitride Semiconductors (Germany: Akademie Verlag) 216 375
[23] Liu X W, Hopgood A A, Usher B F, Wang H and Braithwaite N S 2000 J. Appl. Phys. 88 5975
[24] Floro J A, Follstaedt D M, Provencio P, Hearne S J and Lee S R 2004 J. Appl. Phys. 96 7087
[1] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[2] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[3] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[4] Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation
Jin-Jin Tang(汤金金), Gui-Peng Liu(刘贵鹏), Jia-Yu Song(宋家毓), Gui-Juan Zhao(赵桂娟), and Jian-Hong Yang(杨建红). Chin. Phys. B, 2021, 30(2): 027303.
[5] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[6] Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment
Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰), Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红), and Shu-Jun Cai(蔡树军). Chin. Phys. B, 2021, 30(2): 028502.
[7] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[8] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[9] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[10] Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer
Zhifu Zhu(朱志甫), Zhijia Sun(孙志嘉), Jijun Zou(邹继军), Bin Tang(唐彬), Qinglei Xiu(修青磊), Renbo Wang(王仁波), Jinhui Qu(瞿金辉), Wenjuan Deng(邓文娟), Shaotang Wang(王少堂), Junbo Peng(彭俊波), Zhidong Wang(王志栋), Bin Tang(汤彬), Haiping Zhang(张海平). Chin. Phys. B, 2020, 29(9): 090401.
[11] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[12] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[13] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[14] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[15] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
No Suggested Reading articles found!