Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048201    DOI: 10.1088/1674-1056/23/4/048201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study

He Su-Zhena, Merlitz Holgerb c, Wu Chen-Xub
a Department of Electronic Engineering, Putian University, Putian 351100, China;
b Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
c Leibniz-Institut für Polymerforschung Dresden 01069 Dresden, Germany
Abstract  We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt-free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion are studied in detail as a function of temperatures and a finite salt concentration. Our simulations show that the strong conformation changes as temperature changes. The net positively-charged nanoparticles do not repel each other but are condensed under proper temperatures. If salts are added, the aggregated nanoparticles will be disaggregated due to the Debye screening effect.
Keywords:  nanoparticle      molecular dynamics simulation      aggregation      counterion release  
Received:  07 September 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  82.45.Gj (Electrolytes)  
  82.37.Np (Single molecule reaction kinetics, dissociation, etc.)  
Fund: Project supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2012J05008).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn
About author:  82.45.Gj; 82.37.Np

Cite this article: 

He Su-Zhen, Merlitz Holger, Wu Chen-Xu Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study 2014 Chin. Phys. B 23 048201

[1] Chen K L and Elimelech M 2006 Langmuir 22 10994
[2] Rudalevige T, Francis A H and Zand R 1998 J. Phys. Chem. 102 9797
[3] Nath S, Pal H, Palit D K, Sapre A V and Mittal J P 1998 J. Phys. Chem. 102 10158
[4] Brant J A, Labille J, Bottero J Y and Wiesner M R 2006 Langmuir 22 3878
[5] Halford B 2006 Chem. Eng. News 84 47
[6] Fortner J D, Lyon D Y, Sayes C M, Boyd A M, Falkner J C, Hotze E M, Alemany L B, Tao Y J, Guo W, Ausman K D, Colvin V L and Hughes J B 2005 Environ. Sci. Technol. 39 4307
[7] Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L and Colvin V L 2004 Nano Lett. 4 1881
[8] Lyon D Y, Adams L K, Falkner J C and Alvarez P J 2006 J. Environ. Sci. Technol 40 4360
[9] Jonathan B, Hélène L and Mark R W 2005 Journal of Nanoparticle Research 7 545
[10] Plimpton S J 1995 Comput. Phys. 117 1
[11] Pollock E L and Glosli J 1996 Comput. Phys. Commun. 95 93
[12] Tong C H and Zhu Y J 2010 Chin. Phys. B 19 048702
[13] Chen L, Merlitz H, Wu C X and Sommer J U 2011 Macromolecules 44 3109
[1] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[2] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[3] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[6] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[7] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[8] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[9] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[10] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[11] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[12] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[13] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[14] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[15] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
No Suggested Reading articles found!