Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047503    DOI: 10.1088/1674-1056/23/4/047503
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Optimizing and fabricating magnetocaloric materials

Liu Jian
Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The microstructural modification of existing materials for magnetic cooling applications, and mass fabrication of the modified materials are reviewed, emphasizing the maximization of magnetic entropy change and minimization of hysteresis losses, as well as the engineering problems in the actual application of promising materials. In the first part, physical rules are put forward to explore high performance magnetic refrigerants, including the enhancement of adiabatic temperature change in finite field, multi-caloric effects, and multi-layered structure. Special attention is given to non-magnetic properties. Following this, an overview of mass fabrication of magnetic refrigerants having large entropy change, small hysteresis, good mechanical properties, and high thermal conductivity is presented.
Keywords:  magnetocaloric effect      hysteresis      microstructure  
Received:  21 January 2014      Revised:  20 March 2014      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Corresponding Authors:  Liu Jian     E-mail:
About author:  75.30.Sg

Cite this article: 

Liu Jian Optimizing and fabricating magnetocaloric materials 2014 Chin. Phys. B 23 047503

[1] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[6] Tegus O, Bruck E, Buschow K H J and de Boer F R 2004 Nature 415 250
[7] Trung N T, Ou Z Q, Gortenmulder T J, et al. 2009 Appl. Phys. Lett. 94 102513
[8] Dung N H, Ou Z Q, Caron L, et al. 2011 Adv. Energy Mater. 1 1215
[9] Krenke T, Duman E, Acet M,Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[10] Liu J, Gottschall T, Skokov K, Moore J and Gutfleisch O 2012 Nat. Mater. 11 620
[11] Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S and Fukamichi K 2006 Int. J. Refrig. 29 1302
[12] Sari O and Balli M 2014 Int. J. Refrig. 37 8
[13] Tusek J, Kitanovski A, Tomc U, Favero C and Poredos A 2013 Int. J. Refrig. 37 117
[14] Moos L, Nielsen K K, Engelbrecht K and Bahl C R H 2014 Int. J. Refrig. 37 303
[15] Roy S B 2013 J. Phys.: Condens. Matter 25 183201
[16] Smith A, Bahl C R H, Bjok R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288
[17] Franco V, Blazquez J S, Ingale B and Conde A 2012 Ann. Rev. Mater. Res. 42 305
[18] Gutfleisch O and Franco V 2012 Scripta Mater. 67 521
[19] Pecharsky V K and Gschneidner Jr K A 2001 Adv. Mater. 13 683
[20] Sandeman K G 2012 Scripta Mater. 67 566
[21] Liu J, Scheerbaum N, Lyubina J and Gutfleisch O 2008 Appl. Phys. Lett. 93 102512
[22] Cui J, Chu Y S, Famodu O O, et al. 2006 Nat. Mater. 5 286
[23] Zarnetta R, Takahashi R and YoungML, et al. 2010 Adv. Funct. Mater. 20 1917
[24] Srivastava V, Song Y T, Bhatti K and James R D 2011 Adv. Energy Mater. 1 97
[25] Song Y T, Chen X, Dabade V, Shield T W and James R D 2013 Nature 502 85
[26] Fähler S, Röbler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, M¨uller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10
[27] Manosa L, Moya X, Planes A, Gutfleisch O, Lyubina J, Barrio M, Tamarit J L, Aksoy S, Krenke T and Acet M 2008 Appl. Phys. Lett. 92 12515
[28] Smaili A and Chahine R 1997 J. Appl. Phys. 81 824
[29] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A and Yayama H 1987 J. Appl. Phys. 62 3873
[30] Paticopoulos S C, Caballero-Flores R, Franco V, Blazquez J S, Conde A, Knipling K E and Willard M A 2012 Solid State Comm. 152 1590
[31] Engelbrecht K, Nielsen K K and Bahl C R H 2011 Int. J. Refrig. 34 1132
[32] Tishin AM1999 Handbook of Magnetic Materials (Amsterdam: North Holland)
[33] Ranke P J, Pecharsky V K and Gschneidner Jr K A 1998 Phys. Rev. B 58 12110
[34] Wada H 1999 Cryogenics 39 915
[35] Gschneidner K A Jr 2000 Mater. Sci. Eng. A 287 30
[36] Pecharsky V K 1998 Adv. Cryog. Eng. 43 1729
[37] Liu J, Moore J D, Skokov K P, Krautz M, Löwe K, Barcza A, Katter M and Gutfleisch O 2012 Scripta Mater. 67 584
[38] Lyubina J, Gutfleisch O, Kuz'min M D and Richter M 2008 J. Magn. Magn. Mater. 320 2252
[39] Krautz M, Moore J D, Skokov K, Liu J, Teixeira C S, Schafer R, Schultz L and Gutfleisch O 2012 J. Appl. Phys. 112 083918
[40] Barcza A, Katter M, Zellmann M, Russek V, Jacobs S and Zimm C 2011 IEEE Trans. Mag. 47 3391
[41] Nielsen K K and Bahl C R H 2009 J. Appl. Phys. 105 013916
[42] Nielsen K K and Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001
[43] Hu F X, Qian X L, Wang G J, Sun J R, Shen B G, Cheng Z H and Gao J 2005 Chin. Phys. 14 2329
[44] Lyubina J, Schaefer R, Martin N, Schultz L and Gutfleisch O 2010 Adv. Mater. 22 3735
[45] Chmielus M, Zhang X X, Witherspoon C, Dunand D C and M¨ullner P 2009 Nat. Mater. 8 863
[46] Zhang Z Y, Long Y, Wen D, Ye R C and Wan F R 2004 J. Rare Earths 22 99
[47] Balli M, Sari O, Zamni L, Robert A, Forchelet J and Fruchart D 2011 Solid State Phenom. 170 248
[48] Zhang M, Ye R C, Long Y and Chang Y Q 2011 J. Rare Earths 29 138
[49] Liu J, Krautz M, Skokov K,Woodcock T G and Gutfleisch O 2011 Acta Mater. 59 3602
[50] Yan A, Muller K H and Gutfleisch O 2005 J. Appl. Phys. 97 036102
[51] Hirosawa S, Tomizawa H and Bekki K 2006 IEEE Trans. Magn. 42 3608
[52] Zhang M X, Zhang Y, Hu K, Yan A and Liu J (unpublished)
[53] Liu J, Zhang P N, Dai F P and Yan A 2013 Scripta Mater. 69 485
[54] Dong J D, Yan A and Liu 2014 J. Magn. Magn. Mater. 357 73
[55] Katter M, Zellmann V, Reppel GWand Uesuener K 2008 IEEE Trans. Mag. 44 3044
[56] Trevizoli P V, Alves C S, Mendes M A B, Magnus A and Gama S 2008 J. Magn. Magn. Mater. 320 1582
[57] Yuzuak E, Durak G, Dincer I and Elerman Y 2012 J. Alloys Compd. 541 256
[58] DagulaW, Tegus O, Fuquan B and Zhang L 2005 IEEE Trans. Mag. 41 2778
[59] Dung N H, Zhang L, Ou Z Q and Br¨uck E 2012 Scripta Mater. 67 975
[60] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A915
[61] Phejar M, Paul-Boncour V and Bessais L 2010 Intermetallics 18 2301
[62] Löwe L, Liu J, Skokov K, Moore J, Sepehri-Amin H, Hono K, Katter M and Gutfleisch O 2012 Acta Mater. 60 4268
[63] Katter M, Zellmann V, Reppel G W and Uestuener K 2009 in: Egolf P W, Br¨uck E, Sandenman K G (ed.), Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, IIR, Des Moines, Iowa, 2009, p. 83
[64] Lyubina J, Hannemann U, Cohen L F and Ryan M P 2012 Adv. Energy Mater. 2 1323
[65] Tian N, Zhang N N, You C Y, Gao B and He J 2013 J. Appl. Phys. 113 103909
[66] Turcaud J A, Morrison K, Berenov A, Alford N, Sandeman K and Cohen L F 2013 Scripta Mater. 68 510
[67] Liu J, Scheerbaum N, Kauffmann-Weiss S and Gutfleisch 2012 Adv. Eng. Mater. 14 653
[68] Liu J, Scheerbaum N,Weiss S and Gutfleisch 2009 Appl. Phys. Lett. 95 152503
[69] Skokov K P, Karpenkov D Y, Kuzmin, Radulov I A, Gottschall T, Kaesewurm B, Fries M and Gutfleisch O 2014 J. Appl. Phys. (in press)
[70] Vasile C and Muller C 2006 Int. J. Refrig. 29 1318
[71] Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A, Skokov K and Grufleisch 2013 J. Appl. Phys. 114 043907
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[3] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[4] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[5] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[6] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[9] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[10] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
No Suggested Reading articles found!