Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046103    DOI: 10.1088/1674-1056/23/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate:A contrastive study

Gong Hui, Liu Yu-Min, Yu Zhong-Yuan, Wu Xiu, Yin Hao-Zhi
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Hybrid plasmon waveguides, respectively, with metamaterial substrate and dielectric substrate are investigated and analyzed contrastively with a numerical finite element method. Basic properties, including propagation length Lp, effective mode area Aeff, and energy distribution, are obtained and compared with waveguide geometric parameters at 1.55 μ. For the waveguide with metamaterial substrate, propagation length Lp increases to several tens of microns and effective mode area Aeff is reduced by more than 3 times. Moreover, the near field region is expanded, leading to potential applications in nanophotonics. Therefore, it could be very helpful for improving the integration density in optical chips and developing functional components on a nanometer scale for all optical integrated circuits.
Keywords:  hybrid plasmon waveguide      metamaterial      propagation length      effective mode area  
Received:  16 June 2013      Revised:  23 August 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201) and the Program for the New Century Excellent Talents in University, China (Grant No. NCET-10-0261).
Corresponding Authors:  Liu Yu-Min     E-mail:  microliuyumin@hotmail.com
About author:  61.46.Km; 78.67.Pt

Cite this article: 

Gong Hui, Liu Yu-Min, Yu Zhong-Yuan, Wu Xiu, Yin Hao-Zhi Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate:A contrastive study 2014 Chin. Phys. B 23 046103

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Maier S A 2006 IEEE J. Selected Topics Quantum Electron. 12 1671
[3] Liu J T, Xu B Z, Zhang J, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
[4] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[5] Pfeiffer C A, Economou E N and Ngai K L 1974 Phys. Rev. B 10 3038
[6] Khosravi H, Tilley D and Loudon R 1991 J. Opt. Soc. Am. A 8 112
[7] Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C and Guo G P 2009 Appl. Phys. Lett. 95 221109
[8] Shegai T, Huang Y, Xu H and Kall M 2010 Appl. Phys. Lett. 96 103114
[9] Yan R, Pausauskie P, Huang J and Yang P 2009 Proc. Natl. Acad. Sci. 106 21045
[10] Zhang L and Yang S 2013 Chin. Phys. Lett. 30 034208
[11] Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006
[12] Zhang S and Xu H 2012 ACS Nano 6 8128
[13] He Y, He S and Yang X 2012 Opt. Lett. 37 2907
[14] Salandrino A and Engheta N 2006 Phys. Rev. B 74 075103
[15] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[16] Narimanov E, Noginov M, Li H and Barnakov Y 2010 Proceedings of Quantum Electronics and Laser Science Conference, May 16-21, 2010, San Jose, USA
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Foss C A Jr, Hornyak G L, Stockert J A and Martin C R 1994 J. Phys. Chem. 98 2963
[19] He Y, He S, Gao J and Yang X 2012 Opt. Express 20 22372
[20] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi T 1997 Opt. Lett. 22 475
[21] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp: 53-62
[22] Oulton R, Bartal G, Pile D and Zhang X 2008 New J. Phys. 10 105018
[23] Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F and Guo G C 2010 Appl. Phys. Lett. 97 183102
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[4] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[5] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[6] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[7] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[8] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[9] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[10] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[11] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[12] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[13] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[14] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[15] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
No Suggested Reading articles found!