Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050305    DOI: 10.1088/1674-1056/22/5/050305
GENERAL Prev   Next  

Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference

Zhou Yan-Hui (周彦辉), Wang Lei (王磊), Lai Xiao-Lei (赖晓磊)
Department of Basic Courses, Zhengzhou College of Science & Technology, Zhengzhou 450064, China
Abstract  By means of the cavity-assisted photon interference, a simple scheme is proposed to implement symmetric economical phase-covariant quantum cloning machine of two remote qubits, with each in a separate cavity. With our present scheme, a high-fidelity cloning machine is realized. Our scheme may be quite useful in terms of the distributed quantum information processing.
Keywords:  economical phase-covariant quantum cloning machine      distant atomic qubits      single-photon interference  
Received:  16 September 2012      Revised:  02 December 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Zhou Yan-Hui     E-mail:  yanhuizhou@126.com

Cite this article: 

Zhou Yan-Hui (周彦辉), Wang Lei (王磊), Lai Xiao-Lei (赖晓磊) Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference 2013 Chin. Phys. B 22 050305

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Yuen H P 1986 Phys. Lett. A 113 405
[3] Duan L M and Guo G C 1998 Phys. Lett. A 243 261
[4] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[5] Bružk V and Hillery M 1996 Phys. Rev. A 54 1844
[6] Navez P and Cerf N J 2003 Phys. Rev. A 68 032313
[7] BruβD, Cinchetti M, D'Ariano G M and Macchiavello C 2000 Phys. Rev. A 62 012302
[8] Fiurášek J Phys. Rev. A 2003 67 052314
[9] Zhang W H, Yu L B, Ye L and Dai J L 2007 Phys. Lett. A 360 726
[10] Zou X B, Dong Y L and Guo G C 2006 Phys. Lett. A 360 44
[11] Dai J L and Zhang W H 2009 Chin. Phys. B 18 426
[12] Song Q M and Ye L 2010 Chin. Phys. B 19 080309
[13] Yang R C, Li H C, Lin X, Huang Z P and Xie H 2008 Chin. Phys. B 17 967
[14] Fang B L, Song Q M and Ye L 2011 Phys. Rev. A 83 042309
[15] Feng M 2001 Phys. Rev. A 63 052306
[16] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[17] Deng Z J, Feng M and Gao K L 2007 Phys. Rev. A 75 024302
[18] Fang B L, Wu T and Ye L 2012 Quantum Inf. Comput. 12 0334
[19] Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
[20] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
[21] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323
[1] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[4] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[5] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[6] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[7] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[12] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[13] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[14] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[15] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
No Suggested Reading articles found!