Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 034102    DOI: 10.1088/1674-1056/22/3/034102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Manipulating surface plasmon waves by transformation optics: Design examples of beam squeezer, bend, and omnidirectional absorber

Yu Zhen-Zhong, Feng Yi-Jun, Wang Zheng-Bin, Zhao Jun-Ming, Jiang Tian
Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  We present several design examples of how to apply the transformation optics and curved space under coordinate transformation to manipulating the surface plasmon waves in a controlled manner. We demonstrate in detail the design procedure of the plasmonic wave squeezer, in-plane bend and omnidirectional absorber. We show that the approximation method of modifying only the dielectric material of a dielectric–metal surface of the plasmonic device could lead to acceptable performance, which facilitates the fabrication of the device. The functionality of the proposed plasmonic device is verified using three-dimensional full-wave electromagnetic simulations. Aiming at practical realization, we also show the design of plasmonic in-plane bend and omnidirectional absorber by an alternative transformation scheme, which results in simple device structure with a tapered isotropic dielectric cladding layer on the top of the metal surface that can be fabricated with the existing nanotechnology.
Keywords:  transformation optics      surface plasmon polaritons      metamaterial  
Received:  07 July 2012      Revised:  03 September 2012      Published:  01 February 2013
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60990322, 60990320, 60801001, and 61101011) and the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20100091110036).
Corresponding Authors:  Feng Yi-Jun     E-mail:  yjfeng@nju.edu.cn

Cite this article: 

Yu Zhen-Zhong, Feng Yi-Jun, Wang Zheng-Bin, Zhao Jun-Ming, Jiang Tian Manipulating surface plasmon waves by transformation optics: Design examples of beam squeezer, bend, and omnidirectional absorber 2013 Chin. Phys. B 22 034102

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[4] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 1850
[5] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L and Zhou H 2010 Chin. Phys. B 19 064101
[6] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R and Pendry J B 2008 Photon. Nanostruct. 6 87
[7] Mei Z L and Cui T J 2009 J. Appl. Phys. 105 104913
[8] Kwon D H and Werner D H 2010 IEEE Antennas Propag. Mag. 52 24
[9] Rahm M, Cummer S A, Schurig D, Pendry J B and Smith D R 2008 Phys. Rev. Lett. 100 063903
[10] Xu X, Feng Y and Jiang T 2008 New J. Phys. 10 115027
[11] Tichit P H, Burokur S N and de Lustrac A 2010 Opt. Express. 18 767
[12] Narimanova E E and Kildisheva A V 2009 Appl. Phys. Lett. 95 041106
[13] Genov D A, Zhang S and Zhang X 2009 Nat. Phys. 5 687
[14] Cheng Q, Cui J T, Jiang W X and Cai B G 2010 New J. Phys. 12 063006
[15] Chen H Y, Miao R X and Li M 2010 Opt. Express 18 15183
[16] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Woff P A 1998 Nature. 391 667
[17] Raether H 1988 Surface Plasmons: on Smooth and Rough Surfaces and on Gratings (Berlin: Springer) pp. 21-30
[18] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonic. 4 83
[19] Barnes W L, Dereux A and Ebbesen T W 2003 Nature. 424 824
[20] Kadic M, Guenneau S and Enoch S 2010 Opt. Express 18 12027
[21] Huidobro P A Nesterov M L, Martín-Moreno L and García-Vidal F J 2010 Nano Lett. 10 1985
[22] Liu Y, Zentgraf T, Bartal G and Zhang X 2010 Nano Lett. 10 1991
[23] Huidobro P A Nesterov M L, Martín-Moreno L and García-Vidal F J 2011 New J. Phys. 13 033011
[24] Muamer K, Guillaume D, Chang T M, Guenneau S and Enoch S 2011 Photon. Nanostruct. 9 302
[25] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J and Zhang X 2011 Nat. Nanotechnol. 6 151
[26] Sönnichsen C 2001 Plasmons in Metal Nanostructures (PhD Thesis) (München: Ludwig Maximilians Universtät)
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[3] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[4] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[5] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[6] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[7] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[8] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[9] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[10] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[11] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[12] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[13] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[14] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[15] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
No Suggested Reading articles found!