Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097304    DOI: 10.1088/1674-1056/21/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates

Li Jiaa, Wang Lib, Feng Zhi-Honga, Yu Cuia, Liu Qing-Bina, Dun Shao-Boa, Cai Shu-Juna
a Science and Technology on ASIC Lab., Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b Information Center of Science and Technology, Beijing 100040, China
Abstract  Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decomposition. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with increasing terrace width on Si-terminated on-axis SiC. The interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm2/V · s at a carrier density of 9.8.× 1012 cm-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.
Keywords:  graphene      morphology      Hall mobility      3-inch SiC substrate     
Received:  30 January 2012      Published:  01 August 2012
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.80.Vp (Electronic transport in graphene)  
Corresponding Authors:  Feng Zhi-Hong     E-mail:  blueledviet@yahoo.com.cn

Cite this article: 

Li Jia, Wang Li, Feng Zhi-Hong, Yu Cui, Liu Qing-Bin, Dun Shao-Bo, Cai Shu-Jun Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates 2012 Chin. Phys. B 21 097304

[1] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[2] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 Electron Dev. Lett. 28 282
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[5] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[8] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morzov S V and Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451
[9] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[10] Li X S, Cai W W, An J, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[11] McArdle T J, Chu J O, Zhu Y, Liu Z H, Krishnan M, Breslin C M, Dimitrakopoulos C, Wisnieff R and Grill A 2011 Appl. Phys. Lett. 98 132108
[12] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nature Mater. 8 203
[13] Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504
[14] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y and Avouris P H 2010 Science 327 662
[15] Luxmi, Fisher P J, Srivastava N and Feenstra R M 2009 Appl. Phys. Lett. 95 073101
[16] Robinson J A, LaBella M, Trumbull K A, Weng X J, Cavelero R, Daniels T, Hughes Z, Hollander M, Fanton M and Snyder D 2010 ACS Nano 4 2667
[17] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[18] Dimitrakopoulos C, Grill A, McArdle T J, Liu Z H, Wisnieff R and Antoniadis D A 2011 Appl. Phys. Lett. 98 222105
[19] Hannon J B and Tromp R M 2008 Phys. Rev. B 77 241404
[20] Sharp J W, Poon S J and Goldsmid H J 2001 Phys. Status Solidi A 187 507
[21] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[22] Tanabe S, Sekine Y, Kageshima H, Nagase M and Hibino H 2011 Phys. Rev. B 84 115458
[23] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
[1] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[2] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[3] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[4] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[5] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[6] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[7] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[8] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[9] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[10] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[11] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[12] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[13] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[14] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[15] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
No Suggested Reading articles found!