Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097401    DOI: 10.1088/1674-1056/21/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of C doping on the structural and electronic properties of LiFePO4: A first-principles investigation

Xu Gui-Gui (许桂贵)a b, Wu Jing (吴景)a, Chen Zhi-Gao (陈志高)b, Lin Ying-Bin (林应斌)b, Huang Zhi-Gao (黄志高)b
a Concord University College Fujian Normal University, Fuzhou 350108, China;
b College of Physics and Energy, Fujian Normal University, Fuzhou 350108, China
Abstract  Using first-principles calculations within the generalized gradient approximation (GGA) +U framework, we investigate the effect of C doping on the structural and electronic properties of LiFePO4. The calculated formation energies indicate that C doped at O sites is energetically favored, and C dopants prefer to occupy O3 sites. The band gap of the C doped material is much narrow than that of the undoped one, indicating better electronic conductive properties. To maintain charge balance, the valence of the Fe nearest to C appears as Fe3+, and it will be helpful to the hopping of electrons.
Keywords:  LiFePO4      C doping      electronic structure      first-principles calculations  
Received:  10 February 2012      Revised:  21 April 2012      Accepted manuscript online: 
PACS:  74.62.Dh (Effects of crystal defects, doping and substitution)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074039 and 11004032) and the National Basic Research Program of China (Grant No. 2011CBA00200).
Corresponding Authors:  Huang Zhi-Gao     E-mail:  zghuang@fjnu.edu.cn

Cite this article: 

Xu Gui-Gui (许桂贵), Wu Jing (吴景), Chen Zhi-Gao (陈志高), Lin Ying-Bin (林应斌), Huang Zhi-Gao (黄志高) Effect of C doping on the structural and electronic properties of LiFePO4: A first-principles investigation 2012 Chin. Phys. B 21 097401

[1] Padhi A K, Nanjun daswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[2] Yamada A, Chung S C and Hinokuma K 2001 J. Electrochem. Soc. 148 A224
[3] Ong S P, Chevrier V L and Ceder G 2011 Phys. Rev. B 83 075112
[4] Yamada A, Takei Y, Koizumi H, Sonoyama N, Kanno R, Itoh K, Yonemura M and Kamiyama T 2006 Chem. Mater. 18 804
[5] Sides C R, Croce F, Young V Y, Martin C R and Scrosati B 2005 Electrochem. Solid-State Lett. 8 A484
[6] Lin Y B, Yang Y M, Lin Y, Zeng B Z, Zhao G Y and Huang Z G 2011 Electrochim. Acta 56 4937
[7] Choi D and Kumta P N 2007 J. Power Sources 163 1064
[8] Chung S Y, Bloking J T and Chiang Y M 2002 Nat. Mater. 1 123
[9] Lin Z P, Zhao Y M and Zhao Y J 2011 Chin. Phys. B 20 018201
[10] Ouyang X F, Shi S Q, Ouyang C Y, Jiang D Y, Liu D S, Ye Z Q and Lei M S 2007 Chin. Phys. 16 3042
[11] Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q and Chen L Q 2011 Appl. Phys. A 104 529
[12] Lala S M, Montoro L A, Lemos V, Abbate M and Rosolen J M 2005 Electrochim. Acta 51 7
[13] Molenda J, Marzec J, Swierczek K, Ojczyk W, Ziemnicki M, Molenda M, Drozdek M and Dziembaj R 2004 Solid State Ionics 171 215
[14] Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q and Huang X J 2003 Phys. Rev. B 68 195108
[15] Liu Z J, Huang X J and Wang D S 2008 Solid State Commun. 147 505
[16] Wang L, Huang Y D, Jiang R R and Jia D Z 2007 J. Electrochem. Soc. 154 A1015
[17] Doeff M M, Wilcox J D, Yu R, Aumentado A, Marcinek M and Kostecki R 2008 J. Solid State Electrochem. 12 995
[18] Zhang B, Wang X J, Liu Z J, Li H and Huang X J 2010 J. Electrochem. Soc. 157 A285
[19] Gaberscek M, Dominko R and Jamnik J 2007 Electrochem. Commun. 9 2778
[20] Delacourt C, Wurm C, Laffont L, Leriche J B and Masquelier C 2006 Solid State Ionics 177 333
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Xu G G, Wu Q Y, Chen Z G, Huang Z G, Wu R Q and Feng Y P 2008 Phys. Rev. B 78 115420
[23] Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[26] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[27] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Rousse G, Rodriguez-Carvajal J, Patoux S and Masquelier C 2003 Chem. Mater. 15 4082
[30] Maxisch T and Ceder G 2006 Phys. Rev. B 73 174112
[31] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
[32] Yamada A, Hosoya M, Chung S C, Kudo Y, Hinokuma K, Liu K Y and Nishi Y 2003 J. Power Sources 232 119
[33] Deb A, Bergmann U, Cairns E J and Cramer S P 2004 J. Phys. Chem. B 108 7046
[34] Prince A A M, Mylswamy S, Chan T S, Liu R S, Hannoyer B, Jean M, Shen C H, Huang S M, Lee J F and Wang G X 2004 Solid State Commun. 132 455
[35] Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[36] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[37] Chevrier V L, Ong S P, Armiento R, Chan M K Y and Ceder G 2010 Phys. Rev. B 82 075122
[38] Maxisch T, Zhou F and Ceder G 2006 Phys. Rev. B 73 104301
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!