Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070306    DOI: 10.1088/1674-1056/21/7/070306
GENERAL Prev   Next  

On the role of the uncertainty principle in superconductivity and superfluidity

Roberto Onofrio
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universitã di Padova, Via Marzolo 8, Padova 35131, Italy, ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Abstract  We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
Keywords:  superconductivity      superfluidity      uncertainty principle      squeezed states  
Received:  05 January 2012      Revised:  05 January 2012      Published:  01 June 2012
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
  74.20.De (Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))  
  67.85.Lm (Degenerate Fermi gases)  
Corresponding Authors:  Roberto Onofrio     E-mail:  onofrior@gmail.com

Cite this article: 

Roberto Onofrio On the role of the uncertainty principle in superconductivity and superfluidity 2012 Chin. Phys. B 21 070306

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2] London E 1938 Nature 131 643
[3] Bogoliubov N 1947 J. Phys. USSR 11 23
[4] Bednorz J G and Muller K A 1986 Z. Physik B 64 189
[5] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[7] Schafroth M R 1955 Phys. Rev. 100 463
[8] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[9] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker D J and Grimm R 2004 Phys. Rev. Lett. 92 120401
[10] Kinast J, Hemmler S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
[11] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruel L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
[12] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[13] Josephson B D 1965 Phys. Lett. 16 242
[14] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[15] Putterman S J, Filkenstein R and Rudnick I 1971 Phys. Rev. Lett. 27 1697
[16] Luzuriaga J 1990 Phys. Rev. B 42 934
[17] Vidal F, Carballeira C, Currás R, Mosqueira J, Ramallo M V, Vieira J A and Vi?na J 2002 Europhys. Lett. 59 754
[18] Elion W J, Matters M, Geigenmüller U and Mooij J E 1994 Nature 371 594
[19] Tilley D R and Tilley J 1990 Super uidity and Supercon- ductivity (Bristol: Adam Hilger)
[20] Albert D 2000 Time and Chance (Cambridge: Harvard University Press)
[21] Malament D 2004 Studies in Hist. and Phil. of Mod. Phys. 35 295
[22] Onofrio R 2012 (in preparation)
[23] Hakioglu T, Ivanov V A, Shumovsky A S and Tanatar B 1995 Phys. Rev. B 51 15363
[24] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
[25] Clogston A M 1962 Phys. Rev. Lett. 9 266
[26] Giaever I and Zeller H R 1968 Phys. Rev. Lett. 20 1504
[27] Zeller H R and Giaever I 1969 Phys. Rev. 181 789
[28] Ralph D C, Black C T and Tinkham M 1997 Phys. Rev. Lett. 78 4087
[29] B?nsager M C and MacDonald A H 1999 Sol. State Comm. 112 409
[30] Anderson P W 1959 J. Phys. Chem. Solids 11 26
[31] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[32] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[33] Palmy C, Flach R and de Trey P 1971 Physica 55 663
[34] Griveau J C and Rebizant J 2007 J. Magn. Magnet. Ma- terials 310 629
[35] Cohen R W and Abeles B 1968 Phys. Rev. 168 444
[36] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915
[37] Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C and Bruynseraede Y 1995 Nature 373 319
[38] Li W H, Yang C C, Tsao F C and Lee K C 2003 Phys. Rev. B 68 184507
[39] Wang Z H, Geng D Y, Han Z and Zhang Z D 2010 J. Appl. Phys. 108 013903
[40] Sun L, Matsuoka T, Tamari Y, Shimizu K, Tian J, Tian Y, Zhang C, Shen C, Yi W, Gao H, Li J, Dong X and Zhao Z 2009 Phys. Rev. B 79 140505(R)
[41] Braginsky V B and Khalili F Ya 1992 Quantum Measure- ments (Cambridge: Cambridge University Press)
[42] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
[43] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[44] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[45] Wang P, Deng L, Hagley E W, Fu Z, Chai S and Zhang J 2011 Phys. Rev. Lett. 106 210401
[46] Onofrio R and Presilla C 2002 Phys. Rev. Lett. 89 100401
[47] Onofrio R and Presilla C 2004 J. Stat. Phys. 115 57
[48] Brown-Hayes M and Onofrio R 2004 Phys. Rev. A 70 063614
[49] Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
[50] Hirsch J E 2009 Phys. Scr. 80 035702
[1] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[4] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[5] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[6] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[7] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[8] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[9] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[10] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[11] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[12] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[13] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[14] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[15] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
No Suggested Reading articles found!