Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050401    DOI: 10.1088/1674-1056/ac3ca8
GENERAL Prev   Next  

Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle

Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久)
Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  The thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter is investigated. We calculate the analytical expresses of corresponding thermodynamic variables, e.g., the Hawking temperature, entropy of the black hole. In addition, we derive the heat capacity to analyze the thermal stability of the black hole. We also compute the rate of emission in terms of photons through tunneling. By numerical method, an obvious phase transition behavior is found. Furthermore, according to the general uncertainty principle, we study the quantum corrections to these thermodynamic quantities and obtain the quantum-corrected entropy containing the logarithmic term. Lastly, we investigate the effects of the magnetic charge g, the dark matter parameter k and the generalized uncertainty principle parameter α on the thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle.
Keywords:  general uncertainty principle      quantum-corrected entropy      phase transition  
Received:  20 October 2021      Revised:  22 November 2021      Accepted manuscript online: 
PACS:  04.60.Bc (Phenomenology of quantum gravity)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.U1731107).
Corresponding Authors:  Juhua Chen,E-mail:jhchen@hunnu.edu.cn     E-mail:  jhchen@hunnu.edu.cn
About author:  2021-11-24

Cite this article: 

Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久) Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle 2022 Chin. Phys. B 31 050401

[1] Hawking S W 1975Commun. Math. Phys. 43 199
[2] Gibbons G W and Hawking S W 1977Phys. Rev. D 15 2738
[3] Sakalli I, Halilsoy M and Pasaoglu H 2012Astrophys. Space Sci. 340 155
[4] Kraus P and Wilczek F 1994Mod. Phys. Lett. A 9 3713
[5] Kraus P and Wilczek F 1995Nucl. Phys. B 437 231
[6] Parikh M K and Wilczek F 2000Phys. Rev. Lett. 85 5042
[7] Parikh M K 2002Phys. Lett. B 546 189
[8] Parikh M K 2004Int. J. Mod. Phys. D 13 2351
[9] Angheben M, Nadalini M, Vanzo L and Zerbini S 2005J. High Energy Phys. 2005(05) 014
[10] Srinivasan K and Padmanabhan T 1999Phys. Rev. D 60 024007
[11] Shankaranarayanan S, Srinivasan K and Padmanabhan T 2001Mod. Phys. Lett. 16 571
[12] Zhao R, Wu Y Q and Zhang L C 2003Class. Quantum Grav. 20 4885
[13] Sun X F and Wen B 2004Phys. Lett. A 19 677
[14] Kim Y W and Park Y J 2007Phys. Lett. B 655 172
[15] Yoon M, Ha J and Kim W 2007Phys. Rev. D 76 047501
[16] Nourcer K 2007Phys. Lett. B 646 63
[17] Anacieto M A, Brito F A, Passos E and Santos W P 2014Phys. Lett. B 737 6
[18] Anacieto M A, Brito F A and Passos E 2015Phys. Lett. B 749 181
[19] Kimura Y 2016Int. J. Mod. Phys. A 36 2150027
[20] Casini H, Huerta M and Myers R C 2011J. High Energy Phys. 2011(05) 036
[21] Wang J, Xu W and Meng X H 2014Phys. Rev. D 89 044034
[22] Magan J M, Melnikov D and Silva M R O 2014J. High Energy Phys. 2014(11) 069
[23] Majumder B 2013Gen. Rel. Grav. 45 2403
[24] Shen J, Liu C Z and Zhu N N 2019Acta Phys. Sin. 68 200401(in Chinese)
[25] Kaul R K and Majumdar P 2000Phys. Rev. Lett. 84 5255
[26] Contreras E and Bargueno P 2018Mod. Phys. Lett. A 33 1850184
[27] Chen L S and Cheng H B 2017Int. J. Theor. Phys. 56 3572
[28] Feng Z W, Li H L, Zu X T and Yang S Z 2016Eur. Phys. J. C 76 212
[29] Carr B J, Mureika J and Nicolini P 2015J. High Energy Phys. 2015(07) 052
[30] Hawking S W and Ellis G F R 1973The large scale structure of space-time (Cambridge: Cambridge University Press) Vol. 1
[31] Hawking S W 1994 arXiv:9409195[hep-th]
[32] Bardeen J M 1968Proceedings of the 5th Internationnal Conference on Gravitation and Relativity, August 16-17, 1968, Tbilisi, Georgia, p. 74
[33] Hayward S A 2006Phys. Rev. Lett. 96 031103
[34] Ayon-Beato E and Garcia A 1998Phys. Rev. Lett. 80 5056
[35] Berej W, Matyjasek J, Tryniecki D and Woronowicz M 2006Gen. Rel. Grav. 38 885
[36] Ade P A R et al. (Planck Collaboration) 2016Astron. Astrophys. 594 A23
[37] Kiselev V V 2003Class. Quantum Grav. 20 1187
[38] Toshmatov B, Stuchlík Z and Ahmedov B 2017Eur. Phys. J. P 132 98
[39] Benavides-Gallego C A, Abdujabbarov A and Bambi C 2020Phys. Rev. D 101 044038
[40] Kiselev V V 2020 arXiv:2003.0303031[gr-qc]
[41] Gohar H and Saifullah K 2013 Astrophys. Space Sci. 343181
[42] Weinstein G 2021 arXiv:2102.11209[physics.hist-ph]
[43] Bekenstein J D 1973Phys. Rev. D 7 2333
[44] Bekenstein J D 1974Phys. Rev. D 9 3292
[45] Hawking S W 1976Phys. Rev. D 13 191
[46] Maghsoodi E, Hassanabadi H and Chungb W S 2019 arXiv:1901.10305[gen-ph]
[47] Lifshitz E M, Pitaevskii L P and Berestetskii V B 1982Quantum Electrodynamics (Oxford: Butterworth-Heinemann)
[48] Camelia G A, Arzano M and Procaccini A 2020 arXiv:2004.0405084[gr-qc]
[49] Ayon-Beato E and Garcia A 2000Phys. Lett. B 493 149
[50] Li M H and Yang K C 2012Phys. Rev. D 86 123015
[51] Zhang H X, Chen Y, He P Z, Fan Q Q and Deng J B 2020 arXiv:2007.09408[gr-qc]
[52] Man J and Cheng H 2014Gen. Rel. Grav. 46 1660
[53] Emparan R 2000Phys. Rev. Lett. 85 499
[54] Taefik A 2013J. Cosmol. Astropart. Phys. 2013(07) 040
[55] Medved A J M and Vagenas E C 2004Phys. Rev. D 70 124021
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!