Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070306    DOI: 10.1088/1674-1056/21/7/070306
GENERAL Prev   Next  

On the role of the uncertainty principle in superconductivity and superfluidity

Roberto Onofrioa)b)†
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universitã di Padova, Via Marzolo 8, Padova 35131, Italy, ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Abstract  We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
Keywords:  superconductivity      superfluidity      uncertainty principle      squeezed states  
Received:  05 January 2012      Revised:  05 January 2012      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
  74.20.De (Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))  
  67.85.Lm (Degenerate Fermi gases)  
Corresponding Authors:  Roberto Onofrio     E-mail:  onofrior@gmail.com

Cite this article: 

Roberto Onofrio On the role of the uncertainty principle in superconductivity and superfluidity 2012 Chin. Phys. B 21 070306

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2] London E 1938 Nature 131 643
[3] Bogoliubov N 1947 J. Phys. USSR 11 23
[4] Bednorz J G and Muller K A 1986 Z. Physik B 64 189
[5] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[7] Schafroth M R 1955 Phys. Rev. 100 463
[8] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[9] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker D J and Grimm R 2004 Phys. Rev. Lett. 92 120401
[10] Kinast J, Hemmler S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
[11] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruel L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
[12] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[13] Josephson B D 1965 Phys. Lett. 16 242
[14] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[15] Putterman S J, Filkenstein R and Rudnick I 1971 Phys. Rev. Lett. 27 1697
[16] Luzuriaga J 1990 Phys. Rev. B 42 934
[17] Vidal F, Carballeira C, Currás R, Mosqueira J, Ramallo M V, Vieira J A and Vi?na J 2002 Europhys. Lett. 59 754
[18] Elion W J, Matters M, Geigenmüller U and Mooij J E 1994 Nature 371 594
[19] Tilley D R and Tilley J 1990 Super uidity and Supercon- ductivity (Bristol: Adam Hilger)
[20] Albert D 2000 Time and Chance (Cambridge: Harvard University Press)
[21] Malament D 2004 Studies in Hist. and Phil. of Mod. Phys. 35 295
[22] Onofrio R 2012 (in preparation)
[23] Hakioglu T, Ivanov V A, Shumovsky A S and Tanatar B 1995 Phys. Rev. B 51 15363
[24] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
[25] Clogston A M 1962 Phys. Rev. Lett. 9 266
[26] Giaever I and Zeller H R 1968 Phys. Rev. Lett. 20 1504
[27] Zeller H R and Giaever I 1969 Phys. Rev. 181 789
[28] Ralph D C, Black C T and Tinkham M 1997 Phys. Rev. Lett. 78 4087
[29] B?nsager M C and MacDonald A H 1999 Sol. State Comm. 112 409
[30] Anderson P W 1959 J. Phys. Chem. Solids 11 26
[31] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[32] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[33] Palmy C, Flach R and de Trey P 1971 Physica 55 663
[34] Griveau J C and Rebizant J 2007 J. Magn. Magnet. Ma- terials 310 629
[35] Cohen R W and Abeles B 1968 Phys. Rev. 168 444
[36] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915
[37] Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C and Bruynseraede Y 1995 Nature 373 319
[38] Li W H, Yang C C, Tsao F C and Lee K C 2003 Phys. Rev. B 68 184507
[39] Wang Z H, Geng D Y, Han Z and Zhang Z D 2010 J. Appl. Phys. 108 013903
[40] Sun L, Matsuoka T, Tamari Y, Shimizu K, Tian J, Tian Y, Zhang C, Shen C, Yi W, Gao H, Li J, Dong X and Zhao Z 2009 Phys. Rev. B 79 140505(R)
[41] Braginsky V B and Khalili F Ya 1992 Quantum Measure- ments (Cambridge: Cambridge University Press)
[42] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
[43] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[44] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[45] Wang P, Deng L, Hagley E W, Fu Z, Chai S and Zhang J 2011 Phys. Rev. Lett. 106 210401
[46] Onofrio R and Presilla C 2002 Phys. Rev. Lett. 89 100401
[47] Onofrio R and Presilla C 2004 J. Stat. Phys. 115 57
[48] Brown-Hayes M and Onofrio R 2004 Phys. Rev. A 70 063614
[49] Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
[50] Hirsch J E 2009 Phys. Scr. 80 035702
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[11] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[12] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[13] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
No Suggested Reading articles found!