|
|
On the role of the uncertainty principle in superconductivity and superfluidity |
Roberto Onofrioa)b)† |
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universitã di Padova, Via Marzolo 8, Padova 35131, Italy, ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA |
|
|
Abstract We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
|
Received: 05 January 2012
Revised: 05 January 2012
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
74.20.De
|
(Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))
|
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
Corresponding Authors:
Roberto Onofrio
E-mail: onofrior@gmail.com
|
Cite this article:
Roberto Onofrio On the role of the uncertainty principle in superconductivity and superfluidity 2012 Chin. Phys. B 21 070306
|
[1] |
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
|
[2] |
London E 1938 Nature 131 643
|
[3] |
Bogoliubov N 1947 J. Phys. USSR 11 23
|
[4] |
Bednorz J G and Muller K A 1986 Z. Physik B 64 189
|
[5] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[6] |
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[7] |
Schafroth M R 1955 Phys. Rev. 100 463
|
[8] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[9] |
Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker D J and Grimm R 2004 Phys. Rev. Lett. 92 120401
|
[10] |
Kinast J, Hemmler S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
|
[11] |
Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruel L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
|
[12] |
Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
|
[13] |
Josephson B D 1965 Phys. Lett. 16 242
|
[14] |
Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
|
[15] |
Putterman S J, Filkenstein R and Rudnick I 1971 Phys. Rev. Lett. 27 1697
|
[16] |
Luzuriaga J 1990 Phys. Rev. B 42 934
|
[17] |
Vidal F, Carballeira C, Currás R, Mosqueira J, Ramallo M V, Vieira J A and Vi?na J 2002 Europhys. Lett. 59 754
|
[18] |
Elion W J, Matters M, Geigenmüller U and Mooij J E 1994 Nature 371 594
|
[19] |
Tilley D R and Tilley J 1990 Super uidity and Supercon- ductivity (Bristol: Adam Hilger)
|
[20] |
Albert D 2000 Time and Chance (Cambridge: Harvard University Press)
|
[21] |
Malament D 2004 Studies in Hist. and Phil. of Mod. Phys. 35 295
|
[22] |
Onofrio R 2012 (in preparation)
|
[23] |
Hakioglu T, Ivanov V A, Shumovsky A S and Tanatar B 1995 Phys. Rev. B 51 15363
|
[24] |
Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
|
[25] |
Clogston A M 1962 Phys. Rev. Lett. 9 266
|
[26] |
Giaever I and Zeller H R 1968 Phys. Rev. Lett. 20 1504
|
[27] |
Zeller H R and Giaever I 1969 Phys. Rev. 181 789
|
[28] |
Ralph D C, Black C T and Tinkham M 1997 Phys. Rev. Lett. 78 4087
|
[29] |
B?nsager M C and MacDonald A H 1999 Sol. State Comm. 112 409
|
[30] |
Anderson P W 1959 J. Phys. Chem. Solids 11 26
|
[31] |
Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
|
[32] |
Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
|
[33] |
Palmy C, Flach R and de Trey P 1971 Physica 55 663
|
[34] |
Griveau J C and Rebizant J 2007 J. Magn. Magnet. Ma- terials 310 629
|
[35] |
Cohen R W and Abeles B 1968 Phys. Rev. 168 444
|
[36] |
Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915
|
[37] |
Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C and Bruynseraede Y 1995 Nature 373 319
|
[38] |
Li W H, Yang C C, Tsao F C and Lee K C 2003 Phys. Rev. B 68 184507
|
[39] |
Wang Z H, Geng D Y, Han Z and Zhang Z D 2010 J. Appl. Phys. 108 013903
|
[40] |
Sun L, Matsuoka T, Tamari Y, Shimizu K, Tian J, Tian Y, Zhang C, Shen C, Yi W, Gao H, Li J, Dong X and Zhao Z 2009 Phys. Rev. B 79 140505(R)
|
[41] |
Braginsky V B and Khalili F Ya 1992 Quantum Measure- ments (Cambridge: Cambridge University Press)
|
[42] |
Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
|
[43] |
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
|
[44] |
Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
|
[45] |
Wang P, Deng L, Hagley E W, Fu Z, Chai S and Zhang J 2011 Phys. Rev. Lett. 106 210401
|
[46] |
Onofrio R and Presilla C 2002 Phys. Rev. Lett. 89 100401
|
[47] |
Onofrio R and Presilla C 2004 J. Stat. Phys. 115 57
|
[48] |
Brown-Hayes M and Onofrio R 2004 Phys. Rev. A 70 063614
|
[49] |
Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
|
[50] |
Hirsch J E 2009 Phys. Scr. 80 035702
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|