Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070305    DOI: 10.1088/1674-1056/21/7/070305
GENERAL Prev   Next  

Exact projective solutions of generalized nonlinear Schrödinger system with variable parameters

Zheng Chun-Long(郑春龙)a)† and Li Yin(李银) b)
a School of Physics and Electromechanical Engineering, Shaoguan University, Shaoguan 512005, China;
b School of Mathematics and Information Science, Shaoguan University, Shaoguan 512005, China
Abstract  A direct self-similarity mapping approach is successfully applied to a generalized nonlinear Schrödinger (NLS) system. Based on the known exact solutions of a self-similarity mapping equation, a few types of significant localized excitation with novel properties are obtained by selecting appropriate system parameters. The integrable constraint condition for the generalized NLS system derived naturally here is consistent with the known compatibility condition generated via the Painlev? analysis.
Keywords:  nonlinear Schrödinger system      self-similarity mapping approach      exact solution      localized excitation  
Received:  08 January 2012      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11172181), the Natural Science Foundation of Guangdong Province of China (Grant No. 10151200501000008), the Special Foundation of Talent Engineering of Guangdong Province of China (Grant No. 2009109), and the Scientific Research Foundation of Key Discipline of Shaoguan University of China (Grant No. ZD2009001).
Corresponding Authors:  Zheng Chun-Long     E-mail:  zjclzheng@yahoo.com.cn

Cite this article: 

Zheng Chun-Long(郑春龙) and Li Yin(李银) Exact projective solutions of generalized nonlinear Schrödinger system with variable parameters 2012 Chin. Phys. B 21 070305

[1] Strecher K E, Partridge G, Truscott G and Hulet R G 2002 Phys. Rev. Lett. 417 150
[2] Wang Y Y and Zhang J F 2009 Chin. Phys. B 18 1168
[3] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[4] Zheng C L, Zhang J F, Sheng Z M and Huang W H 2003 Chin. Phys. 12 11
[5] Dai C Q, Wang X G and Zhang J F 2011 Ann. Phys. 326 645
[6] Towers I and Malomed B A 2002 J. Opt. Soc. Am. B 19 537
[7] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[8] Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[9] Wang H and Li B 2011 Chin. Phys. B 20 040203
[10] Xie S Y and Lin J 2010 Chin. Phys. B 19 050201
[11] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[12] Lou S Y and Ni G J 1989 J. Math. Phys. 30 1614
[13] Zhang Y, Wei W W, Cheng T F and Song Y 2011 Chin. Phys. B 20 110204
[14] Zheng C L and Chen L Q 2004 Commun. Theor. Phys. 41 671
[15] Li H M 2002 Chin. Phys. Lett. 19 745
[16] Fan E G 2003 J. Phys. A 36 7009
[17] Zheng C L, Fang J P and Chen L Q 2005 Chin. Phys. 14 676
[18] Zheng C L and Chen L Q 2008 Int. J. Mod. Phys. B 22 671
[19] Wu H Y, Fei J X and Zheng C L 2010 Commun. Theor. Phys. 54 55
[20] Fei J X and Zheng C L 2011 Z. Naturforsch. 66a 1
[21] Dai C Q, Wang Y Y and Wang X G 2011 J. Phys. A 44 155203
[22] Dai C Q, Chen R P and Zhou G Q 2011 J. Phys. B 44 145401
[23] Tang X Y, Gao Y, Huang F and Lou S Y 2009 Chin. Phys. B 18 4622
[24] Sulem C and Sulem P L 1991 The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (New York: Springer-Verlag)
[25] Calogero F, Degasperis A and Xiaoda J 2001 J. Math. Phys. 42 2635
[26] Zhao D, He X G and Luo H G 2009 Eur. Phys. J. D 53 213
[27] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[28] Perez-Garcia V M, Torres P J and Harvey V V 2006 Physica D 221 31
[29] Beitia J B, Perez-Garcia V M, Vekslerchik V and Kontotop V V 2008 Phys. Rev. Lett. 100 164102
[30] Gagnon L and Winternitz P 1993 J. Phys. A 26 7061
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[6] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[7] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[8] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[9] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[10] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[11] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[12] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[13] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[14] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[15] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
No Suggested Reading articles found!