Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087203    DOI: 10.1088/1674-1056/19/8/087203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of ferromagnetism and superconductivity in normal mental/superconductor/ferromagnet structures

Yu Hua-Ling(郁华玲)†ger, Peng Ju(彭菊), and Jin Ben-Xi(金本喜)
School of Physics and Electronic Electrical Engineering and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
Abstract  We extend the Blonder, Tinkham and Klapwijk theory to the study of the inverse proximity effects in the normal mental/superconductor/ferromagnet structures. In the superconducting film, there are the gapless superconductivity and the spin-dependent density of states both within and without the energy gap. It indicates an appearance of the inverse-proximity-effect-induced ferromagnetism and a coexistence of ferromagnetism and superconductivity near the interface. The influence of exchange energy in the ferromagnet and barrier strength at the superconductor/ferromagnet interface on the inverse proximity effects is discussed.
Keywords:  coexistence of ferromagnetism and superconductivity      inverse proximity effects      normal mental/superconductor/ferromagnet structures  
Received:  28 June 2009      Revised:  08 March 2010      Accepted manuscript online: 
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.20.-z (Theories and models of superconducting state)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.78.-w (Superconducting films and low-dimensional structures)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant Nos. 10847132 and 10847133), and the Natural Science Foundation of Education Burean of Jiangsu Province, China (Grant No. 07KJD140024).

Cite this article: 

Yu Hua-Ling(郁华玲), Peng Ju(彭菊), and Jin Ben-Xi(金本喜) Coexistence of ferromagnetism and superconductivity in normal mental/superconductor/ferromagnet structures 2010 Chin. Phys. B 19 087203

[1] Deutscher G and De Gennes P G 1969 Superconductivity (New York: Marcel Dekker) p. 1005
[2] Bergeret F S, Volkov A F and Efetov K B 2005 Rev. Mod. Phys. 77 1321
[3] Andreev A F 1964 Sov. Phys. JEPT 19 1228
[4] Kontos T, Aprili M, Lesueur J and Grison X 2001 Phys. Rev. Lett. 86 304
[5] Ryazanov V V, Oboznov V A, Rusanov A Y, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
[6] Sun G Y, Xing D Y, Dong J M and Liu M 2002 Phys. Rev. B 65 174508
[7] Demler E A, Arnold G B and Beasley R M 1997 Phys. Rev. B 55 15174
[8] Andreev A V, Buzdin A and Osgood III R M 1991 Phys. Rev. B 43 10124
[9] Yu H L and Dong Z C 2007 Chin. Phys. 16 3072
[10] Liu D T, Tian Y, Chen G H and Yang Q S 2008 Chin. Phys. B 17 311
[11] Li X W 2007 Chin. Phys. 16 3514
[12] Li X W 2009 Chin. Phys. B 18 5491
[13] Peng J, Yu H L and Wang Z G 2009 Chin. Phys. B 18 5485
[14] Halterman K and Valls O T 2002 Phys. Rev. B 66 224516.
[15] Halterman K and Valls O T 2004 Phys. Rev. B 69 014517
[16] Fazio R and Lucheroni C 1999 Europhys. Lett. 45 707
[17] Krivoruchko V N and Koshina E A 2002 Phys. Rev. B 66 014521
[18] Bergeret F S, Yeyati A L and Martin-Rodero A 2005 Phys. Rev. B 72 064524
[19] Asulin I, Yuli O, Koren G and Millo O 2009 Phys. Rev. B 79 174524
[20] Abrikosov A A 1988 Fundamentals of the Theory of Metals (Amsterdam: North-Holland)
[21] Fulde P and Ferrel A 1964 Phys. Rev. A 135 550
[22] Larkin A and Ovchinnikov Y 1965 Sov. Phys. JETP 20 726
[23] Karchev N I, Blagoev K B, Bedell K S and Littlewood P B 2001 Phys. Rev. Lett. 86 846
[24] Shen R, Zheng Z M, Liu S and Xing D Y 2003 Phys. Rev. B 67 24514
[25] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[26] de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin)
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[3] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[4] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[7] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[8] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[9] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[10] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[11] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[12] The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发). Chin. Phys. B, 2018, 27(12): 127401.
[13] Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors
Ge He(何格), Zhong-Xu Wei(魏忠旭), Jérémy Brisbois, Yan-Li Jia(贾艳丽), Yu-Long Huang(黄裕龙), Hua-Xue Zhou(周花雪), Shun-Li Ni(倪顺利), Alejandro V Silhanek, Lei Shan(单磊), Bei-Yi Zhu(朱北沂), Jie Yuan(袁洁), Xiao-Li Dong(董晓莉), Fang Zhou(周放), Zhong-Xian Zhao(赵忠贤), Kui Jin(金魁). Chin. Phys. B, 2018, 27(4): 047403.
[14] Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2017, 26(7): 077201.
[15] Transition from tunneling regime to local point contact realized on Ba0.6K0.4Fe2As2 surface
Xingyuan Hou(侯兴元), Yunyin Jie(揭云印), Jing Gong(巩靖), Bing Shen(沈冰), Hai Zi(子海), Chunhong Li(李春红), Cong Ren(任聪), Lei Shan(单磊). Chin. Phys. B, 2017, 26(6): 067402.
No Suggested Reading articles found!