Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 028701    DOI: 10.1088/1674-1056/adf4a8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mechanism of loop-2 in facilitating microtubule depolymerase activity of kinesin-8 motors

Xiao-Xuan Shi(史晓璇)1,2, Yao Wang(王瑶)2, Jie Wang(王杰)2, Yu-Ru Liu(刘玉如)2, and Ping Xie(谢平)2,†
1 School of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401220, China;
2 Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Kinesin-8 motors can move with a high processivity on microtubule lattices toward the plus end. After reaching the plus end, the kinesin-8 motors can pause for a long time and promote the microtubule depolymerization. Here, using atomistic molecular dynamics simulations we studied the structural changes of the kinesin-8 head in different nucleotide states bound to the straight and curved tubulins and the corresponding interactions between them. We found that the kinesin-8 head in ATP and/or ADP-Pi state has the similar strong affinity while in ADP state has the similar weak affinity to both the straight and curved tubulins, which is strongly implicated in the mechanism of the long but very different residence times of the kinesin-8 motor on the microtubule lattice and at the end. Moreover, we found that loop-2 of the kinesin-8 head bound strongly to the curved tubulin in the stable state has a large interference with its neck linker pulled in the minus-ended orientation. This is contrary to the case of the head bound strongly to the straight tubulin, where loop-2 has little interference with its neck linker pulled in the minus-ended orientation. The large interference can induce a larger internal force between the two heads and thus can induce the two curved tubulins bound strongly by the two heads to be more curved relative to each other. This is strongly implicated in the mechanism of the depolymerase activity of the kinesin-8 motors and explains the origin of loop-2 playing a facilitating role in the depolymerase activity.
Keywords:  microtubule depolymerization      kinesin      binding energy      straight tubulin      curved tubulins      molecular dynamics simulation  
Received:  29 May 2025      Revised:  17 July 2025      Accepted manuscript online:  28 July 2025
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.hg (Dynamics of intermolecular interactions)  
Fund: Project supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202504529) and the General Program of Chongqing Natural Science Foundation (Grant No. CSTB2025NSCQ-GPX0833).
Corresponding Authors:  Ping Xie     E-mail:  pxie@aphy.iphy.ac.cn

Cite this article: 

Xiao-Xuan Shi(史晓璇), Yao Wang(王瑶), Jie Wang(王杰), Yu-Ru Liu(刘玉如), and Ping Xie(谢平) Mechanism of loop-2 in facilitating microtubule depolymerase activity of kinesin-8 motors 2026 Chin. Phys. B 35 028701

[1] Vale R D 2003 Cell 112 467
[2] Lawrence C J, Dawe R K, Christie K R, et al. 2004 J. Cell Boil. 167 19
[3] Miki H, Okada Y and Hirokawa N 2005 Trends Cell Biol. 15 467
[4] Hirokawa N, Noda Y, Tanaka Y, et al. 2009 Nat. Rev. Mol. Cell Bio. 10 682
[5] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39
[6] Xie P 2024 J. Phys. Chem. Lett. 15 3893
[7] Wang Y, Liu Y R, Wang P Y, et al. 2024 J. Phys. Chem. B 128 1194
[8] Desai A, Verma S, Mitchison T J, et al. 1999 Cell 96 69
[9] Hunter A W, Caplow M, Coy D L, et al. 2003 Cell 11 445
[10] Wordeman L, Wagenbach M and von Dassow G 2007 J. Cell Biol. 179 869
[11] Friel C T and Welburn J P 2018 Biochem. Soc. Trans. 46 1665
[12] Gupta Jr M L, Carvalho P, Roof D M, et al. 2006 Nat. Cell Biol. 8 913
[13] Howard J and Hyman A A 2007 Curr. Opin. Cell Biol. 19 31
[14] Shrestha S, Hazelbaker M, Yount A L, et al. 2018 Biomolecules 9 1
[15] Walczak C E, Gayek S and Ohi R 2013 Annu. Rev. Cell Dev. Biol. 29 417
[16] Reilly M L and Benmerah A 2019 Biol. Cell 111 79
[17] Xie P 2024 Euro. Biophys. J. 53 339
[18] Jannasch A, Bormuth V, Storch M, et al. 2013 Biophys. J. 104 2456
[19] Varga V, Helenius J, Tanaka K, et al. 2006 Nat. Cell Biol. 8 957
[20] Su X, Qiu W, Gupta M L Jr, et al. 2011 Cell 43 751
[21] Stumpff J, Du Y, English C A, et al. 2011 Cell 43 764
[22] Varga V, Leduc C, Bormuth V, et al. 2009 Cell 138 1174
[23] Wang D, Nitta R, Morikawa M, et al. 2016 eLife 5 e18101
[24] Arellano-Santoyo H, Geyer E A, Stokasimov E, et al. 2017 Dev. Cell 42 37
[25] Du Y, English C A and Ohi R 2010 Curr. Biol. 20 374
[26] Ciorita A, Bugiel M, Sudhakar S, et al. 2021 Cytoskeleton 78 177
[27] Xie P 2024 Adv. Protein Chem. Struct. Biol. 141 87
[28] Hunter B, Benoit M P M H, Asenjo A B, et al. 2022 Nat. Commun. 13 4198
[29] Crevel I M T C, Lockhart A and Cross R A 1996 J. Mol. Biol. 257 66
[30] HancockWO and Howard J 1999 Proc. Natl. Acad. Sci. USA 96 13147
[31] Sosa H, Peterman E J G, Moerner W E, et al. 2001 Nature Struc. Biol. 8 540
[32] Uemura S, Kawaguchi K, Yajima J, et al. 2002 Proc. Natl. Acad. Sci. USA 99 5977
[33] Cross R A 2016 Biopolymers 105 476
[34] Benoit M P M H, Asenjo A B, Paydar M, et al. 2021 Nat. Commun. 12 3637
[35] Fu Y B, Liu Y R, Wang P Y, et al. 2018 J. Polymer. Sci. B: Polymer Phys. 56 297
[36] Xie P 2023 J. Theor. Biol. 571 111556
[37] Gudimchuk N B, Ulyanov E V, O’Toole E, et al. 2020 Nat. Commun. 11 3765
[38] Xie P 2025 J. Theor. Biol. 605 112088
[39] Shi X X, Guo S K, Wang P Y, et al. 2020 Proteins 88 545
[40] Pettersen E F, Goddard T D, Huang C C, et al. 2004 J. Comput. Chem. 25 1605
[41] Hess B, Kutzner C, van der Spoel D, et al. 2008 J. Chem. Theor. Comput. 4 435
[1] Yielding transition under oscillatory shear in metallic glasses
Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火). Chin. Phys. B, 2026, 35(1): 016103.
[2] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[3] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[4] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[5] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[6] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[7] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[8] Molecular dynamics simulations reveal the activation mechanism of human TMEM63A induced by lysophosphatidylcholine insertion
Zain Babar, Junaid Wahid, Xiaofei Ji(季晓飞), Huilin Zhao(赵慧琳), Hua Yu(于华), and Dali Wang(王大力). Chin. Phys. B, 2025, 34(12): 128704.
[9] Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study
Weiwu Miao(苗未午), Hongyu He(贺虹羽), Yi Tao(陶毅), Qiong Wu(吴琼), Chao Wu(吴超), and Chenhan Liu(刘晨晗). Chin. Phys. B, 2025, 34(10): 106501.
[10] On load dependence of detachment rate of kinesin motor
Xiao-Xuan Shi(史晓璇), Yao Wang(王瑶), Yu-Ru Liu(刘玉如), and Ping Xie(谢平). Chin. Phys. B, 2025, 34(1): 018702.
[11] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[12] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[13] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[14] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[15] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
No Suggested Reading articles found!