| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Yielding transition under oscillatory shear in metallic glasses |
| Nannan Ren(任楠楠)1,†, Tiantian Meng(孟天天)1, Hui Huang(黄慧)1, Qunshuang Ma(马群双)1,2,á, Jun Fang(房军)3, Qin Li(李勤)3, and Weihuo Li(李维火)1 |
1 School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China; 2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; 3 Hohhot Colin Thermal Power Co., Ltd., Hohhot 010030, Chin |
|
|
|
|
Abstract The yielding transition of amorphous solids remains a fundamental yet poorly understood issue in materials physics. In this work, we employ oscillatory shear to probe the yielding transition in metallic glasses (MGs) with various thermal histories. We identify three distinct deformation regimes depending on the applied strain amplitudes. Below the yield strain $\gamma_{y}$, the response is elastic and accompanied by aging, through reversible atomic rearrangements that preserve the material's initial memory of thermal history. Slightly above $\gamma_{y}$, the system undergoes a sharp transition during oscillatory cycles, indicated by a sudden rise in potential energy and non-affine displacement, along with the emergence of a shear band. Well above $\gamma_{y}$, plastic deformation dominates, driving samples of various initial stability toward a common steady state, while thermal histories are erased by irreversible rearrangements and shear band formation. These findings advance the understanding of failure mechanisms in MGs and shed light on tuning their mechanical performance in industrial applications involving cyclic loading.
|
Received: 15 October 2025
Revised: 17 November 2025
Accepted manuscript online: 15 December 2025
|
|
PACS:
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
| |
64.70.pe
|
(Metallic glasses)
|
| |
62.20.fg
|
(Shape-memory effect; yield stress; superelasticity)
|
| |
62.20.fq
|
(Plasticity and superplasticity)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52201169 and 52575352) and the Key Research & Development Plan of Anhui Province (Grant No. 2022a05020016). |
Corresponding Authors:
Nannan Ren, Qunshuang Ma
E-mail: nnren@ahut.edu.cn;qunsma@ahut.edu.cn
|
Cite this article:
Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火) Yielding transition under oscillatory shear in metallic glasses 2026 Chin. Phys. B 35 016103
|
[1] Yeh W T, Ozawa M, Miyazaki K, Kawasaki T and Berthier L 2020 Phys. Rev. Lett. 124 225502 [2] Parmar A D S, Kumar S and Sastry S 2019 Phys. Rev. X 9 021018 [3] Leishangthem P, Parmar A D S and Sastry S 2017 Nat. Commun. 8 14653 [4] Bonn D, Denn M M, Berthier L, Divoux T and Manneville S 2017 Rev. Mod. Phys. 89 35005 [5] Pan J, Ivanov Y P, Zhou W H, Li Y and Greer A L 2020 Nature 578 559 [6] Schuh C A and Lund A C 2003 Nat. Mater. 2 449 [7] Cheng Y Q and Ma E 2011 Acta Mater. 59 1800 [8] Ozawa M, Berthier L, Biroli G, Rosso A and Tarjus G 2018 Proc. Natl. Acad. Sci. USA 115 6656 [9] Zhang Z, Ding J and Ma E 2022 Proc. Natl. Acad. Sci. USA 119 e2213941119 [10] Shang B 2023 Chin. Phys. B 33 16102 [11] Cochran J O, Callaghan G L, Caven M and Fielding S M 2024 Phys. Rev. Lett. 132 168202 [12] Singh M, Ozawa M and Berthier L 2020 Phys. Rev. Mater. 4 025603 [13] Priezjev N V 2021 Comp. Mater. Sci. 200 110831 [14] Wang W H 2019 Prog. Mater. Sci. 106 100561 [15] Tang X, Deng J, Mo Y, Meng L and Yao X 2023 Sci. Sin. Phys. 54 254602 (in Chinese) [16] Priezjev N V 2023 Metals 13 1606 [17] Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M and Qiao J C 2024 Int. J. Fatigue 187 108446 [18] Wang B, Wang L J, Shang B S, Gao X Q, Yang Y, Bai H Y, Pan M X, Wang W H and Guan P F 2020 Acta Mater. 195 611 [19] Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J andWangWH 2024 Prog. Mater. Sci. 144 101283 [20] Ma J, Yang C, Liu X, Shang B, He Q, Li F, Wang T, Wei D, Liang X, Wu X, Wang Y, Gong F, Guan P, Wang W and Yang Y 2019 Sci. Adv. 5 x7256 [21] Kamani K M and Rogers S A 2024 Proc. Natl. Acad. Sci. USA 121 e1893558175 [22] Radhakrishnan R and Fielding S M 2016 Phys. Rev. Lett. 117 188001 [23] Shang B, Wang W and Guan P 2022 Acta Mater. 225 117557 [24] Khirallah K, Tyukodi B, Vandembroucq D and Maloney C E 2021 Phys. Rev. Lett. 126 218005 [25] Bhaumik H, Foffi G and Sastry S 2021 Proc. Natl. Acad. Sci. USA 118 e2100227118 [26] Das P, Vinutha H A and Sastrya S 2020 Proc. Natl. Acad. Sci. USA 117 10203 [27] Fiocco D, Foffi G and Sastry S 2013 Phys. Rev. E 88 20301 [28] Cui S, Liu H and Peng H 2022 Chin. Phys. B 31 86108 [29] Khushika A, Laurson L and Jana P K 2023 Phys. Rev. E 108 64612 [30] Liu Y, Yang Z, Yang Y, Luo J and Huang X 2024 J. Non-Cryst. Solids 629 122891 [31] Li Y, Guo Q, Kalb J A and Thompson C V 2008 Science 322 1816 [32] Plimpton S 1995 J. Comput. Phys. 117 1 [33] MendelevMI, KramerMJ, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Philos. Mag. 89 967 [34] Hoover W G 1985 Phys. Rev. A 31 1695 [35] Priezjev N V 2018 J. Non-Cryst. Solids 479 42 [36] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192 [37] Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083 [38] Cao T, Zhang Q, Wang L 2023 Acta Mater. 260 119343 [39] Zhao Y, Shang B, Zhang B 2022 Sci. Adv. 8 n3623 [40] Zhao Y, Zhao Y and Wang D 2022 Phys. Rev. X 12 031021 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|