Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016103    DOI: 10.1088/1674-1056/ae2c6c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Yielding transition under oscillatory shear in metallic glasses

Nannan Ren(任楠楠)1,†, Tiantian Meng(孟天天)1, Hui Huang(黄慧)1, Qunshuang Ma(马群双)1,2,á, Jun Fang(房军)3, Qin Li(李勤)3, and Weihuo Li(李维火)1
1 School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China;
2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China;
3 Hohhot Colin Thermal Power Co., Ltd., Hohhot 010030, Chin
Abstract  The yielding transition of amorphous solids remains a fundamental yet poorly understood issue in materials physics. In this work, we employ oscillatory shear to probe the yielding transition in metallic glasses (MGs) with various thermal histories. We identify three distinct deformation regimes depending on the applied strain amplitudes. Below the yield strain $\gamma_{y}$, the response is elastic and accompanied by aging, through reversible atomic rearrangements that preserve the material's initial memory of thermal history. Slightly above $\gamma_{y}$, the system undergoes a sharp transition during oscillatory cycles, indicated by a sudden rise in potential energy and non-affine displacement, along with the emergence of a shear band. Well above $\gamma_{y}$, plastic deformation dominates, driving samples of various initial stability toward a common steady state, while thermal histories are erased by irreversible rearrangements and shear band formation. These findings advance the understanding of failure mechanisms in MGs and shed light on tuning their mechanical performance in industrial applications involving cyclic loading.
Keywords:  metallic glasses      mechanical property      oscillatory shear      molecular dynamics simulation  
Received:  15 October 2025      Revised:  17 November 2025      Accepted manuscript online:  15 December 2025
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  64.70.pe (Metallic glasses)  
  62.20.fg (Shape-memory effect; yield stress; superelasticity)  
  62.20.fq (Plasticity and superplasticity)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52201169 and 52575352) and the Key Research & Development Plan of Anhui Province (Grant No. 2022a05020016).
Corresponding Authors:  Nannan Ren, Qunshuang Ma     E-mail:  nnren@ahut.edu.cn;qunsma@ahut.edu.cn

Cite this article: 

Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火) Yielding transition under oscillatory shear in metallic glasses 2026 Chin. Phys. B 35 016103

[1] Yeh W T, Ozawa M, Miyazaki K, Kawasaki T and Berthier L 2020 Phys. Rev. Lett. 124 225502
[2] Parmar A D S, Kumar S and Sastry S 2019 Phys. Rev. X 9 021018
[3] Leishangthem P, Parmar A D S and Sastry S 2017 Nat. Commun. 8 14653
[4] Bonn D, Denn M M, Berthier L, Divoux T and Manneville S 2017 Rev. Mod. Phys. 89 35005
[5] Pan J, Ivanov Y P, Zhou W H, Li Y and Greer A L 2020 Nature 578 559
[6] Schuh C A and Lund A C 2003 Nat. Mater. 2 449
[7] Cheng Y Q and Ma E 2011 Acta Mater. 59 1800
[8] Ozawa M, Berthier L, Biroli G, Rosso A and Tarjus G 2018 Proc. Natl. Acad. Sci. USA 115 6656
[9] Zhang Z, Ding J and Ma E 2022 Proc. Natl. Acad. Sci. USA 119 e2213941119
[10] Shang B 2023 Chin. Phys. B 33 16102
[11] Cochran J O, Callaghan G L, Caven M and Fielding S M 2024 Phys. Rev. Lett. 132 168202
[12] Singh M, Ozawa M and Berthier L 2020 Phys. Rev. Mater. 4 025603
[13] Priezjev N V 2021 Comp. Mater. Sci. 200 110831
[14] Wang W H 2019 Prog. Mater. Sci. 106 100561
[15] Tang X, Deng J, Mo Y, Meng L and Yao X 2023 Sci. Sin. Phys. 54 254602 (in Chinese)
[16] Priezjev N V 2023 Metals 13 1606
[17] Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M and Qiao J C 2024 Int. J. Fatigue 187 108446
[18] Wang B, Wang L J, Shang B S, Gao X Q, Yang Y, Bai H Y, Pan M X, Wang W H and Guan P F 2020 Acta Mater. 195 611
[19] Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J andWangWH 2024 Prog. Mater. Sci. 144 101283
[20] Ma J, Yang C, Liu X, Shang B, He Q, Li F, Wang T, Wei D, Liang X, Wu X, Wang Y, Gong F, Guan P, Wang W and Yang Y 2019 Sci. Adv. 5 x7256
[21] Kamani K M and Rogers S A 2024 Proc. Natl. Acad. Sci. USA 121 e1893558175
[22] Radhakrishnan R and Fielding S M 2016 Phys. Rev. Lett. 117 188001
[23] Shang B, Wang W and Guan P 2022 Acta Mater. 225 117557
[24] Khirallah K, Tyukodi B, Vandembroucq D and Maloney C E 2021 Phys. Rev. Lett. 126 218005
[25] Bhaumik H, Foffi G and Sastry S 2021 Proc. Natl. Acad. Sci. USA 118 e2100227118
[26] Das P, Vinutha H A and Sastrya S 2020 Proc. Natl. Acad. Sci. USA 117 10203
[27] Fiocco D, Foffi G and Sastry S 2013 Phys. Rev. E 88 20301
[28] Cui S, Liu H and Peng H 2022 Chin. Phys. B 31 86108
[29] Khushika A, Laurson L and Jana P K 2023 Phys. Rev. E 108 64612
[30] Liu Y, Yang Z, Yang Y, Luo J and Huang X 2024 J. Non-Cryst. Solids 629 122891
[31] Li Y, Guo Q, Kalb J A and Thompson C V 2008 Science 322 1816
[32] Plimpton S 1995 J. Comput. Phys. 117 1
[33] MendelevMI, KramerMJ, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Philos. Mag. 89 967
[34] Hoover W G 1985 Phys. Rev. A 31 1695
[35] Priezjev N V 2018 J. Non-Cryst. Solids 479 42
[36] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192
[37] Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083
[38] Cao T, Zhang Q, Wang L 2023 Acta Mater. 260 119343
[39] Zhao Y, Shang B, Zhang B 2022 Sci. Adv. 8 n3623
[40] Zhao Y, Zhao Y and Wang D 2022 Phys. Rev. X 12 031021
[1] Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬). Chin. Phys. B, 2025, 34(9): 096401.
[2] Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu50Zr46Al4 metallic glasses through Ag additions
Dongmei Li(李冬梅), Zhongyi Zhang(张忠一), Bolin Shang(尚博林), Rui Feng(丰睿), Xuefeng Li(李雪枫), and Peng Yu(余鹏). Chin. Phys. B, 2025, 34(8): 086107.
[3] Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field
Yanxue Wu(吴言雪), Qiang-Qiang Pan(潘强强), Rui Ning(宁睿), and Hailong Peng(彭海龙). Chin. Phys. B, 2025, 34(7): 076402.
[4] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[5] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[6] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[7] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[8] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[9] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[10] Molecular dynamics simulations reveal the activation mechanism of human TMEM63A induced by lysophosphatidylcholine insertion
Zain Babar, Junaid Wahid, Xiaofei Ji(季晓飞), Huilin Zhao(赵慧琳), Hua Yu(于华), and Dali Wang(王大力). Chin. Phys. B, 2025, 34(12): 128704.
[11] Atypical homogeneous rheology of a high-entropy metallic glass challenges standard free volume models
Guanghui Xing(邢光辉), Bletry Marc, Mottelet Stephane, and Jichao Qiao(乔吉超). Chin. Phys. B, 2025, 34(12): 126402.
[12] Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study
Weiwu Miao(苗未午), Hongyu He(贺虹羽), Yi Tao(陶毅), Qiong Wu(吴琼), Chao Wu(吴超), and Chenhan Liu(刘晨晗). Chin. Phys. B, 2025, 34(10): 106501.
[13] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[14] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[15] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
No Suggested Reading articles found!