Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018702    DOI: 10.1088/1674-1056/ad8ec7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

On load dependence of detachment rate of kinesin motor

Xiao-Xuan Shi(史晓璇)1, Yao Wang(王瑶)2, Yu-Ru Liu(刘玉如)2, and Ping Xie(谢平)2,†
1 School of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401220, China;
2 Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination of which is critically related to the chemomechanical coupling mechanism of the motor. Here, we use three models for the load dependence of the detachment rate of the kinesin motor to study theoretically and numerically the maximal force generated and microtubule-attachment duration of the motor. By comparing the theoretical and numerical results with the available experimental data, we show that only one model can explain well the available experimental data, indicating that only this model can be applicable to the kinesin motor.
Keywords:  kinesin      detachment rate      generated force      chemomechanical coupling mechanism      optical trapping  
Received:  13 September 2024      Revised:  12 October 2024      Accepted manuscript online:  05 November 2024
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.hg (Dynamics of intermolecular interactions)  
Fund: Project supported by Youth Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202404522).
Corresponding Authors:  Ping Xie     E-mail:  pxie@iphy.ac.cn

Cite this article: 

Xiao-Xuan Shi(史晓璇), Yao Wang(王瑶), Yu-Ru Liu(刘玉如), and Ping Xie(谢平) On load dependence of detachment rate of kinesin motor 2025 Chin. Phys. B 34 018702

[1] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39
[2] Kozielski F, Sack S, Marx A, et al. 1997 Cell 91 985
[3] Howard J 2001 Mechanics of Motor Proteins and the Cytoskeleton (Sunderland, MA, USA: Sinauer Associates)
[4] Vale R D 2003 Cell 112 467
[5] Lawrence C J, Dawe R K, Christie K R, et al. 2004 J. Cell Boil. 167 19
[6] Miki H, Okada Y and Hirokawa N 2005 Trends Cell Biol. 15 467
[7] Hirokawa N, Noda Y, Tanaka Y, et al. 2009 Nat. Rev. Mol. Cell Bio. 10 682
[8] Vale R D and Milligan R A 2000 Science 288 88
[9] Xie P 2021 Commun. Theor. Phys. 73 057601
[10] Wang J G, Shi X X, Liu Y R, et al. 2022 Chin. Phys. B 31 058702
[11] Geng Y Z, Lu L A, Jia N, et al. 2023 Chin. Phys. B 32 108701
[12] Liu Y and Zhang Z 2024 Chin. Phys. B 33 028708
[13] Svoboda K, Schmidt C F, Schnapp B J, et al. 1993 Nature 365 721
[14] Schnitzer M J and Block S M 1997 Nature 388 386
[15] Coppin C M, Pierce DWHsu L, et al. 1997 Proc. Natl. Acad. Sci. USA 94 8539
[16] Kojima H, Muto E, Higuchi H, el al. 1997 Biophys. J. 73 2012
[17] Visscher K, Schnitzer M J and Block S M 1999 Nature 400 184
[18] Nishiyama M, Higuchi H and Yanagida T 2002 Nat. Cell Biol. 4 790
[19] Khalil A S, Appleyard D C, Labno A K, et al. 2008 Proc. Natl. Acad. Sci. USA 105 19247
[20] Carter N J and Cross R A 2005 Nature 435 308
[21] Andreasson J O L, Milic B, Chen G Y, et al. 2015 eLife 4 e07403
[22] Milic B, Andreasson J O L, HancockWO, et al. 2014 Proc. Natl. Acad. Sci. USA 111 14136
[23] Xie P 2022 Eur. Phys. J. E 45 28
[24] Mehta A D, Rock R S, Rief M, et al. 1999 Nature 400 590
[25] Uemura S, Higuchi H, Olivares A O, et al. 2004 Nat. Struct. Mol. Biol. 11 877
[26] Rief M, Rock R. S., Mehta A D, et al. 2000 Proc. Natl. Acad. Sci. USA 97 9482
[27] Clemen A E M, Vilfan M, Jaud J, et al. 2005 Biophys. J. 88 4402
[28] Xie P 2024 Cell. Mol. Bioeng. 17 137
[29] Budaitis B G, Jariwala S, Rao L, et al. 2021 J. Cell Biol. 220 e202004227
[30] Pyrpassopoulos S, Shuman H and Ostap E M 2020 Biophys. J. 118 243
[31] Pyrpassopoulos S, Gicking A M, Zaniewski T M, et al. 2023 Proc. Natl. Acad. Sci. USA 120 e2216903120
[32] Kunwar A, Tripathy S K, Xu J, et al. 2011 Proc. Natl. Acad. Sci. USA 108 18960
[33] Bouzat S and Falo F 2010 Phys. Biol. 7 046009
[34] Guo S K, Shi X X, Wang P Y, et al. 2019 Biophys. Chem. 253 106216
[35] Vu H T, Chakrabarti S, Hinczewski M, et al. 2016 Phys. Rev. Lett. 117 078101
[36] Berger F, Keller C, Klumpp S, et al. 2012 Phys. Rev. Lett. 108 208101
[37] Berger F, Keller C, Lipowsky R, et al. 2013 Cell. Mol. Bioeng. 6 48
[38] Wang Y, Liu Y Y, Liang J, et al. 2021 Commun. Theor. Phys. 73 15603
[39] Bameta T, Das D, Das D, et al. 2017 Phys. Rev. E 95 22406
[40] Fernández Casafuz A B, De Rossi M C and Bruno L 2020 Phys. Rev. E 101 62416
[41] Kunwar A, Vershinin M, Xu J, et al. 2008 Curr. Biol. 18 1173
[42] Arpaǧ G, Shastry S, Hancock W O, et al. 2014 Biophys. J. 107 1896
[43] Uçar M C and Lipowsky R 2020 Nano Lett. 20 669
[44] Muller M J, Klumpp S and Lipowsky R 2008 Proc. Natl Acad. Sci. USA 105 4609
[45] Fu Y B, Guo S K, Wang P Y, et al. 2019 Eur. Phys. J. E 42 41
[46] Dallon J C, Leduc C, Etienne-Manneville S, et al. 2019 J. Theor. Biol. 464 132
[47] Portet S, Etienne-Manneville S, Leduc C, et al. 2022 J. Theor. Biol. 547 111183
[48] Wang Y, Liu Y, Wang P, et al. 2022 Commun. Theor. Phys. 74 105601
[49] Xie P 2020 ACS Omega 5 5721
[50] Xie P 2021 J. Theor. Biol. 530 110879
[51] Khataee H and Howard J 2019 Phys. Rev. Lett. 122 188101
[52] Khataee H, MahamdehMand Neufeld Z 2020 Phys. Rev. E 102 022406
[53] Cao L, Wang W, Jiang Q, et al. 2014 Nat. Comm. 5 5364
[54] Xie P 2024 J. Phys. Chem. Lett. 15 3893
[55] Wang Y, Liu Y R, Wang P Y, et al. 2024 J. Phys. Chem. B 128 1194
[1] Transverse manipulation of particles using Bessel beam of tunable size generated by cross-phase modulation
Xiang-Lai Qiao(乔响来), Xue-Mei Cheng(程雪梅), Qian Zhang(张倩), Wen-Ding Zhang(张文定), Zhao-Yu Ren(任兆玉), and Jin-Tao Bai(白晋涛). Chin. Phys. B, 2023, 32(4): 048703.
[2] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[3] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[4] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[5] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[6] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[7] Protection-against-water-attack determined difference between strengths of backbone hydrogen bonds in kinesin's neck zipper region
Jing-Yu Qin(覃静宇), Yi-Zhao Geng(耿轶钊), Gang Lü(吕刚), Qing Ji(纪青), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(2): 028704.
[8] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[9] Angular-modulated spatial distribution of ultrahigh-order modes assisted by random scattering
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Tian Xu(许田), Fan Chen(陈凡), Jian Li(李建), Qing-Bang Han(韩庆邦), Xian-Feng Chen(陈险峰). Chin. Phys. B, 2017, 26(11): 114210.
[10] Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule
H. R. Saeidi, S. S. Setayandeh, A. Lohrasebi. Chin. Phys. B, 2015, 24(8): 080701.
[11] Multiple optical trapping based on high-order axially symmetric polarized beams
Zhou Zhe-Hai (周哲海), Zhu Lian-Qing (祝连庆). Chin. Phys. B, 2015, 24(2): 028704.
[12] A study of multi-trapping of tapered-tip single fiber optical tweezers
Liang Pei-Bo (梁佩博), Lei Jiao-Jie (雷皎洁), Liu Zhi-Hai (刘志海), Zhang Yu (张羽), Yuan Li-Bo (苑立波). Chin. Phys. B, 2014, 23(8): 088702.
[13] Initial conformation of kinesin’s neck linker
Geng Yi-Zhao (耿轶钊), Ji Qing (纪青), Liu Shu-Xia (刘书霞), Yan Shi-Wei (晏世伟). Chin. Phys. B, 2014, 23(10): 108701.
[14] Monte Carlo simulation on backward steps of single kinesin molecule
Wang Hong(王宏), Zhang Yong(张勇), Dou Shuo-Xing(窦硕星), and Wang Peng-Ye(王鹏业) . Chin. Phys. B, 2008, 17(4): 1513-1517.
[15] A non-Markov ratchet model of molecular motors: processive movement of single-headed kinesin KIF1A
Xie Ping (谢平), Dou Shuo-Xing (窦硕星), Wang Peng-Ye (王鹏业). Chin. Phys. B, 2006, 15(3): 536-541.
No Suggested Reading articles found!