| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Simulation on mechanochemical coupling of rotary biomotors F1 and V1 |
| Liqiang Dai(戴立强)1, Yao-Gen Shu(舒咬根)1,†, and Zhong-Can Ouyang(欧阳钟灿)2,‡ |
1 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; 2 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract The F$_1$-ATPase and V$_1$-ATPase are rotary biomotors. Alignment of their amino acid sequences, which originate from bovine heart mitochondria (1BMF) and Enterococcus hirae (3VR6), respectively, demonstrates that the segment forming the ATP catalytic pocket is highly conserved. Single-molecule experiments, however, have revealed subtle differences in efficiency between the F$_1$ and V$_1$ motors. Here, we perform both atomistic and coarse-grained molecular dynamics simulations to investigate the mechanochemical coupling and coordination in F$_1$ and V$_1$ ATPase. Our results show that the correlation between conformational changes in F$_1$ is stronger than that in V$_1$, indicating that the mechanochemical coupling in F$_1$ is tighter than in V$_1$. Moreover, the unidirectional rotation of F$_1$ is more processive than that of V$_1$, which accounts for the higher efficiency observed in F$_1$ and explains the occasional backward steps detected in single-molecule experiments on V$_1$.
|
Received: 01 October 2025
Revised: 17 November 2025
Accepted manuscript online: 02 December 2025
|
|
PACS:
|
87.16.Nn
|
(Motor proteins (myosin, kinesin dynein))
|
| |
87.15.ap
|
(Molecular dynamics simulation)
|
| |
87.15.hp
|
(Conformational changes)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 22193032 and 32401033) and the Research Fund of Wenzhou Institute, Chinese Academy of Sciences (Grant Nos. WIUCASQD2020009, WIUCASQD2023005, XSZD2024004, 2021HZSY0061, and WIUCASICTP2022). |
Corresponding Authors:
Yao-Gen Shu, Zhong-Can Ouyang
E-mail: shuyaogen@ucas.ac.cn;oy@itp.ac.cn
|
Cite this article:
Liqiang Dai(戴立强), Yao-Gen Shu(舒咬根), and Zhong-Can Ouyang(欧阳钟灿) Simulation on mechanochemical coupling of rotary biomotors F1 and V1 2026 Chin. Phys. B 35 028702
|
[1] Li M and Shu Y G 2020 Physics of Soft and Condens Matter, The strategy of development of Chinese disciplines, Part. III, The Chap. 5: Biomotors (Beijing: China Science Publishing & Media Ltd.) (in Chinese) [2] Shu Y G and Ou-Yang Z C 2022 Biophys. Rev. Lett. 17 43 [3] Shu Y G and Lai P Y 2008 J. Phys. Chem. B 112 13453 [4] Shu Y G, Yue J C and Ou-Yang Z C 2010 Nanoscale 2 1284 [5] Shu Y G, Zhang X H, Ou-Yang Z C and Li M 2012 J. Phys.: Condens. Matter 24 035105 [6] Li M, Ou-Yang Z C and Shu Y G 2016 Acta Phys. Sin. 65 188702 (in Chinese) [7] Li M, Ou-Yang Z C and Shu Y G 2018 Int. J. Mod. Phys. B 32 1840001 [8] Shu Y G and Shi H L 2004 Phys. Rev. E 69 021912 [9] Ma R 2013 Phys. Rev. E 87 052718 [10] Wang Z Q, Li J F, Xie Y G, Wang G D and Shu Y G 2018 Chin. Phys. B 27 128701 [11] Liu C H, Liu T Y, Huang R Z, Gao T F and Shu Y G 2019 Acta Phys. Sin. 68 240501 (in Chinese) [12] Boyer P D 1997 Annu. Rev. Biochem. 66 717 [13] Weber J and Senior A E 2003 FEBS Lett. 545 61 [14] Abrahams J P, Leslie A GW, Lutter R andWalker J E 1994 Nature 370 621 [15] Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel C A M and Gräber P 2004 Nat. Struct. Mol. Biol. 11 135 [16] Nishi T and Forgac M 2002 Nat. Rev. Mol. Cell. Biol. 3 94 [17] Yamato I, Kakinuma Y and Murata T 2016 Biophys. Physicobiol. 13 37 [18] Yasuda R, Noji H, Kinosita K Jr and Yoshida M 1998 Cell 93 1117 [19] Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Murata T and Iino R 2014 J. Biol. Chem. 289 31212 [20] Hayashi K, Watanabe H, Ueno H, Iino R and Noji H 2010 Phys. Rev. Lett. 104 218103 [21] McMillan D G G,Watanabe R, Ueno H, Cook G M and Noji H 2016 J. Biol. Chem. 291 23965 [22] Noji H, Yasuda R, Yoshida M, Kinosita K and Itoh H 2001 J. Biol. Chem. 276 25480 [23] Uenno H, Suzuki K and Murata T 2018 Cell Mol. Life Sci. 75 1789 [24] Noji H, Yasuda R, Yoshida M and Kinosita K Jr 1997 Nature 386 299 [25] Iida T, Minagawa Y, Ueno H, Kawai F, Murata T and Iino R 2019 J. Biol. Chem. 294 17017 [26] Watanabe R and Noji H 2014 Nat. Commun. 5 3486 [27] Nelson M T, HumphreyWand Schulten K 1996 Comput. Appl. 10 251 [28] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinf. 78 1950 [29] Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y and Murata T 2013 Nature 493 703 [30] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 [31] Bussi G, Donadio D and ParrinelloM2007 J. Chem. Phys. 126 014101 [32] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182 [33] Dai L and Yu J 2020 Biochem. Biophys. Res. Commun. 533 97 [34] Schlitter J, Engels M and Kruger P 1994 J. Mol. Graph. 12 84 [35] Cheng X, Wang H and McCammon J A 2006 PLOS Comput. Biol. 2 e134 [36] Ovchinnikov V and Karplus M 2012 J. Phys. Chem. B 116 8584 [37] Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q and Takada S 2011 J. Chem. Theory. Comput. 7 1979 [38] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. 298 937 [39] Okazaki K I, Koga N, Takada S, Onuchic J N and Wolynes P G 2006 Proc. Natl. Acad. Sci. USA 103 11844 [40] Chao E, Dai L, Tian J, Da L T and Yu J 2022 J. Vis. Exp. 181 e63406 [41] Pearson K 1896 Philos. Trans. R. Soc. A 187 253 [42] Dai L, Flechsig H and Yu J 2017 Biophys. J. 113 1440 [43] Higgins D G, Bleasby A J and Fuchs R 1992 Comp. Appl. Biosci. 8 189 [44] Gouet P, Courcelle E, Stuart D I and Métoz F 1999 Bioinformatics 15 305 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|