Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 028702    DOI: 10.1088/1674-1056/ae2674
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Simulation on mechanochemical coupling of rotary biomotors F1 and V1

Liqiang Dai(戴立强)1, Yao-Gen Shu(舒咬根)1,†, and Zhong-Can Ouyang(欧阳钟灿)2,‡
1 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
2 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The F$_1$-ATPase and V$_1$-ATPase are rotary biomotors. Alignment of their amino acid sequences, which originate from bovine heart mitochondria (1BMF) and Enterococcus hirae (3VR6), respectively, demonstrates that the segment forming the ATP catalytic pocket is highly conserved. Single-molecule experiments, however, have revealed subtle differences in efficiency between the F$_1$ and V$_1$ motors. Here, we perform both atomistic and coarse-grained molecular dynamics simulations to investigate the mechanochemical coupling and coordination in F$_1$ and V$_1$ ATPase. Our results show that the correlation between conformational changes in F$_1$ is stronger than that in V$_1$, indicating that the mechanochemical coupling in F$_1$ is tighter than in V$_1$. Moreover, the unidirectional rotation of F$_1$ is more processive than that of V$_1$, which accounts for the higher efficiency observed in F$_1$ and explains the occasional backward steps detected in single-molecule experiments on V$_1$.
Keywords:  rotary biomotor      correlation      mechanochemical coupling      simulation  
Received:  01 October 2025      Revised:  17 November 2025      Accepted manuscript online:  02 December 2025
PACS:  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
  87.15.ap (Molecular dynamics simulation)  
  87.15.hp (Conformational changes)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 22193032 and 32401033) and the Research Fund of Wenzhou Institute, Chinese Academy of Sciences (Grant Nos. WIUCASQD2020009, WIUCASQD2023005, XSZD2024004, 2021HZSY0061, and WIUCASICTP2022).
Corresponding Authors:  Yao-Gen Shu, Zhong-Can Ouyang     E-mail:  shuyaogen@ucas.ac.cn;oy@itp.ac.cn

Cite this article: 

Liqiang Dai(戴立强), Yao-Gen Shu(舒咬根), and Zhong-Can Ouyang(欧阳钟灿) Simulation on mechanochemical coupling of rotary biomotors F1 and V1 2026 Chin. Phys. B 35 028702

[1] Li M and Shu Y G 2020 Physics of Soft and Condens Matter, The strategy of development of Chinese disciplines, Part. III, The Chap. 5: Biomotors (Beijing: China Science Publishing & Media Ltd.) (in Chinese)
[2] Shu Y G and Ou-Yang Z C 2022 Biophys. Rev. Lett. 17 43
[3] Shu Y G and Lai P Y 2008 J. Phys. Chem. B 112 13453
[4] Shu Y G, Yue J C and Ou-Yang Z C 2010 Nanoscale 2 1284
[5] Shu Y G, Zhang X H, Ou-Yang Z C and Li M 2012 J. Phys.: Condens. Matter 24 035105
[6] Li M, Ou-Yang Z C and Shu Y G 2016 Acta Phys. Sin. 65 188702 (in Chinese)
[7] Li M, Ou-Yang Z C and Shu Y G 2018 Int. J. Mod. Phys. B 32 1840001
[8] Shu Y G and Shi H L 2004 Phys. Rev. E 69 021912
[9] Ma R 2013 Phys. Rev. E 87 052718
[10] Wang Z Q, Li J F, Xie Y G, Wang G D and Shu Y G 2018 Chin. Phys. B 27 128701
[11] Liu C H, Liu T Y, Huang R Z, Gao T F and Shu Y G 2019 Acta Phys. Sin. 68 240501 (in Chinese)
[12] Boyer P D 1997 Annu. Rev. Biochem. 66 717
[13] Weber J and Senior A E 2003 FEBS Lett. 545 61
[14] Abrahams J P, Leslie A GW, Lutter R andWalker J E 1994 Nature 370 621
[15] Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel C A M and Gräber P 2004 Nat. Struct. Mol. Biol. 11 135
[16] Nishi T and Forgac M 2002 Nat. Rev. Mol. Cell. Biol. 3 94
[17] Yamato I, Kakinuma Y and Murata T 2016 Biophys. Physicobiol. 13 37
[18] Yasuda R, Noji H, Kinosita K Jr and Yoshida M 1998 Cell 93 1117
[19] Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Murata T and Iino R 2014 J. Biol. Chem. 289 31212
[20] Hayashi K, Watanabe H, Ueno H, Iino R and Noji H 2010 Phys. Rev. Lett. 104 218103
[21] McMillan D G G,Watanabe R, Ueno H, Cook G M and Noji H 2016 J. Biol. Chem. 291 23965
[22] Noji H, Yasuda R, Yoshida M, Kinosita K and Itoh H 2001 J. Biol. Chem. 276 25480
[23] Uenno H, Suzuki K and Murata T 2018 Cell Mol. Life Sci. 75 1789
[24] Noji H, Yasuda R, Yoshida M and Kinosita K Jr 1997 Nature 386 299
[25] Iida T, Minagawa Y, Ueno H, Kawai F, Murata T and Iino R 2019 J. Biol. Chem. 294 17017
[26] Watanabe R and Noji H 2014 Nat. Commun. 5 3486
[27] Nelson M T, HumphreyWand Schulten K 1996 Comput. Appl. 10 251
[28] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinf. 78 1950
[29] Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y and Murata T 2013 Nature 493 703
[30] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[31] Bussi G, Donadio D and ParrinelloM2007 J. Chem. Phys. 126 014101
[32] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[33] Dai L and Yu J 2020 Biochem. Biophys. Res. Commun. 533 97
[34] Schlitter J, Engels M and Kruger P 1994 J. Mol. Graph. 12 84
[35] Cheng X, Wang H and McCammon J A 2006 PLOS Comput. Biol. 2 e134
[36] Ovchinnikov V and Karplus M 2012 J. Phys. Chem. B 116 8584
[37] Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q and Takada S 2011 J. Chem. Theory. Comput. 7 1979
[38] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. 298 937
[39] Okazaki K I, Koga N, Takada S, Onuchic J N and Wolynes P G 2006 Proc. Natl. Acad. Sci. USA 103 11844
[40] Chao E, Dai L, Tian J, Da L T and Yu J 2022 J. Vis. Exp. 181 e63406
[41] Pearson K 1896 Philos. Trans. R. Soc. A 187 253
[42] Dai L, Flechsig H and Yu J 2017 Biophys. J. 113 1440
[43] Higgins D G, Bleasby A J and Fuchs R 1992 Comp. Appl. Biosci. 8 189
[44] Gouet P, Courcelle E, Stuart D I and Métoz F 1999 Bioinformatics 15 305
[1] Structures and dynamics of helium in liquid lithium: A study by deep potential molecular dynamics
Xinyu Zhu(朱新宇), Jianchuan Liu(刘建川), Tao Chen(陈涛), Xinyue Xie(谢炘玥), Jin Wang(王进), Yi Xie(谢懿), Chenxu Wang(王晨旭), and Mohan Chen(陈默涵). Chin. Phys. B, 2026, 35(1): 013101.
[2] Review of machine learning tight-binding models: Route to accurate and scalable electronic simulations
Jijie Zou(邹暨捷), Zhanghao Zhouyin(周寅张皓), Shishir Kumar Pandey, and Qiangqiang Gu(顾强强). Chin. Phys. B, 2026, 35(1): 017101.
[3] Micromagnetic simulation of μMAG standard problem No. 3: Evaluating the standard dipole-dipole interaction
A. K. F. Silva, D. C. Carvalho, H. S. Assis, and P. Z. Coura. Chin. Phys. B, 2026, 35(1): 017501.
[4] EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials
Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓). Chin. Phys. B, 2026, 35(1): 018201.
[5] Yielding transition under oscillatory shear in metallic glasses
Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火). Chin. Phys. B, 2026, 35(1): 016103.
[6] Surface reconstruction modulated superconductivity on quasi-2D iron pnictide superconductor KCa2Fe4As4F2
Wenjing Zeng(曾文静), Zongyuan Zhang(张宗源), Xiaoyan Dong(董晓燕), Yubing Tu(涂玉兵), Yanwei Wu(吴彦玮), Teng Wang(王腾), Fan Zhang(张凡), Shuai Shao(邵帅), Jie Hou(侯杰), Xingyuan Hou(侯兴元), Ning Hao(郝宁), Gang Mu(牟刚), and Lei Shan(单磊). Chin. Phys. B, 2025, 34(8): 087402.
[7] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[8] Reconfiguration of B-DNA structure induced by ethanol
Yue Huang(黄悦), Yipeng Chen(陈以鹏), Jing Li(李静), Rongri Tan(谈荣日), and Huanhuan Qiu(邱环环). Chin. Phys. B, 2025, 34(8): 088707.
[9] Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality
Xuyang Li(栗旭阳), Bin Liu(刘斌), Xianwen Liu(刘贤文), Shuo Zhang(张硕), Congyang Wen(温丛阳), Jin Zhang(张进), Haifeng Liang(梁海锋), Guangcai Yuan(袁广才), Jianshe Xue(薛建设), and Zhinong Yu(喻志农). Chin. Phys. B, 2025, 34(7): 076101.
[10] A kinetic simulation study of glow discharges within millimeter-scale hollow anode
Yaoyu Ren(任耀宇) and Chaohui Lan(蓝朝晖). Chin. Phys. B, 2025, 34(7): 075203.
[11] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[12] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[13] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[14] Testing algorithm for the computation of the transverse emittance of the ion beams generated by the ECR mVINIS ion source based on a pepper-pot method
Viktor Jocić, Igor Telečki, and Ivan Trajić. Chin. Phys. B, 2025, 34(6): 060701.
[15] Rotational dynamics of neutral O2 driven by linearly, elliptically and circularly polarized femtosecond pulsed lasers
Ting Xu(许婷), Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yin-Song Tang(唐寅淞), Si-Qi Pei(裴思琪), Cong-Cong Jia(贾聪聪), Yong-Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2025, 34(5): 053301.
No Suggested Reading articles found!