Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027301    DOI: 10.1088/1674-1056/ae194d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Strongly modifiable decay and angle-dependent light intensity for an atom near active plasmonic structures: A macroscopic QED study

Ji-Yue Dai(戴吉月), Meng-Dan Zhao(赵梦丹)†, Yu Zhou(周昱)‡, and Jun Xin(忻俊)
School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Tunable plasmonic structures provide the possibility to actively modify the radiation from atoms through electromagnetic coupling. In this paper, we investigate the decay and radiation behavior of an atom near a dielectric nanosphere with conductive surface within the framework of macroscopic quantum electrodynamics. The electromagnetic fields including the losses in the materials can be taken as fundamental excitations which interact with the atom through a transition dipole. Both weak and strong coupling regimes have been investigated. The decay rate and the angle-dependent light intensities indeed strongly depend on the parameters of the system, i.e., the position and orientation of the dipole, the geometric size, and the surface conductivity, providing the opportunity of artificial control over these quantities. Generalizing the formalism in this paper to other systems, like metamaterials, is straightforward, which we believe may pave a way for future active quantum nanophotonic devices.
Keywords:  plasmonics      quantum electrodynamics      light-matter interaction  
Received:  20 July 2025      Revised:  28 October 2025      Accepted manuscript online:  30 October 2025
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
Fund: M. D. Zhao was supported by Hangzhou Dianzi University (Grant No. KYS075621018). J. Xin was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY24A050004).
Corresponding Authors:  Meng-Dan Zhao, Yu Zhou     E-mail:  Zmengdan_2017@163.com;yzhou@hdu.edu.cn

Cite this article: 

Ji-Yue Dai(戴吉月), Meng-Dan Zhao(赵梦丹), Yu Zhou(周昱), and Jun Xin(忻俊) Strongly modifiable decay and angle-dependent light intensity for an atom near active plasmonic structures: A macroscopic QED study 2026 Chin. Phys. B 35 027301

[1] Maier Stefan A 2006 Opt. Express 14 1957
[2] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W2008 Nature 453 757
[3] Cirací C, Hill R T, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A and Smith D R 2012 Science 337 1072
[4] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333
[5] Thongrattanasiri S and García de Abajo F J 2013 Phys. Rev. Lett. 110 187401
[6] Degiron A and Smith D R 2006 Opt. Express 14 1611
[7] Amirjani A and Sadrnezhaad S K 2021 J. Mater. Chem. C 9 9791
[8] Esteban R, Borisov A G, Nordlander P and Aizpurua J 2012 Nat. Commun. 3 825
[9] Tame M S, McEnery K R, O zdemir S K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329
[10] Teperik T V, Nordlander P, Aizpurua J and Borisov A G 2013 Opt. Express 21 27306
[11] Kulkarni V, Prodan E and Nordlander P 2013 Nano Lett. 13 5873
[12] ZhuW, Esteban R, Borisov A G, Baumberg J J, Nordlander P, Lezec H J, Aizpurua J and Crozier K B 2016 Nat. Commun. 7 11495
[13] García de Abajo F J 2008 J. Phys. Chem. C 112 17983
[14] Fernández-Domínguez A I,Wiener A, García-Vidal F J, Maier S A and Pendry J B 2012 Phys. Rev. Lett. 108 106802
[15] Mortensen N A, Raza S, Wubs M, Søndergaard T and Bozhevolnyi S I 2014 Nat. Commun. 5 3809
[16] Tserkezis C, Stefanou N,WubsMand Mortensen N A 2016 Nanoscale 8 17532
[17] Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M and Koppens F H L 2017 Science 357 187
[18] Chen H, McMahon J M, Ratner M A and Schatz G C 2010 J. Phys. Chem. C 114 14384
[19] Marinica D C, Zapata M, Nordlander P, Kazansky A K, Echenique P M, Aizpurua J and Borisov A G 2015 Sci. Adv. 1 1501095
[20] Varas A, García-González P, Feist J, García-Vidal F J and Rubio A 2016 Nanophotonics 5 409
[21] Asadi-Aghbolaghi M, Rüger R, Jamshidi Z and Visscher L 2020 J. Phys. Chem. C 124 7946
[22] Herring C J and Montemore M M 2023 ACS Nanosci. Au 3 269
[23] Bonafé F P, Albar E I, Ohlmann S T, Kosheleva V P, Bustamante C M, Troisi F, Rubio A and Appel H 2025 Phys. Rev. B 111 085114
[24] Yang Y, Zhu D, Yan W, Agarwal A, Zheng M, Joannopoulos J D, Lalanne P, Christensen T, Berggren K K and Soljačić M 2019 Nature 576 248
[25] Matloob R, Loudon R, Barnett S M and Jeffers J 1995 Phys. Rev. A 52 4823
[26] Matloob R and Loudon R 1996 Phys. Rev. A 53 4567
[27] Gruner T and Welsch D G 1996 Phys. Rev. A 53 1818
[28] Dung H T, Knöll L and Welsch D G 1998 Phys. Rev. A 57 3931
[29] Matloob R 1999 Phys. Rev. A 60 50
[30] Shahbazyan T V 2016 Phys. Rev. Lett. 117 207401
[31] Behbahani M M, Amooghorban E and Mahdifar A 2016 Phys. Rev. A 94 013854
[32] Gu Y, Wang L, Ren P, Zhang J, Zhang T, J F Martin O and Gong Q H 2012 Nano Lett. 12 2488
[33] K Jha P, Ni X, Wu C, Wang Y and Zhang X 2015 Phys. Rev. Lett. 115 025501
[34] Yan W, Faggiani R and Lalanne P 2018 Phys. Rev. B 97 205422
[35] Zhou Q, Lin S P, Zhang P and Chen X W 2019 Acta Phys. Sin. 68 147104 (in Chinese)
[36] Rivera N and Kaminer I 2020 Nat. Rev. Phys. 2 538
[37] Hsu L Y 2025 J. Phys. Chem. Lett. 16 1604
[38] Dung H T, Knöll L and Welsch D G 2000 Phys. Rev. A 62 053804
[1] High-Z benchmarking: Probing the sub-eV frontier and an extensive Li-like uranium atomic dataset
Shuang Li(李双), Yan Wang(王燕), Xue-Lian Chong(崇雪莲), Yan-Ran Luo(罗嫣然), and Fan Zhang(张凡). Chin. Phys. B, 2026, 35(2): 023103.
[2] Enhancing the performance of quantum battery by squeezing reservoir engineering
Yue Li(李月), Rong-Fang Liu(刘蓉芳), Jia-Bin You(游佳斌), Wan-Li Yang(杨万里), and Hua Guan(管桦). Chin. Phys. B, 2026, 35(1): 010303.
[3] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[4] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[5] Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2024, 33(2): 020315.
[6] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[9] Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing
Debao Wang(王德宝), Jingwei Lv(吕靖薇), Wei Liu(刘伟), Yanru Ren(任艳茹), Wei Li(李薇), Xinchen Xu(许鑫辰), Chao Liu(刘超), and Paul K Chu(朱剑豪). Chin. Phys. B, 2023, 32(11): 110204.
[10] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[11] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[12] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[13] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!